메뉴 건너뛰기




Volumn 407, Issue , 2016, Pages 101-113

Magnetic hyperthermia in phosphate coated iron oxide nanofluids

Author keywords

Ferrite nanoparticles; Magnetic hyperthermia; Specific absorption rate

Indexed keywords

HYPERTHERMIA THERAPY; MAGNETITE; NANOFLUIDICS; NANOMAGNETICS; NANOPARTICLES; ORTHOPHOSPHORIC ACID; PRECIPITATION (CHEMICAL);

EID: 84955242023     PISSN: 03048853     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.jmmm.2016.01.044     Document Type: Article
Times cited : (96)

References (76)
  • 1
    • 0023852013 scopus 로고
    • Rationale for use of local hyperthermia with radiation-therapy and selected anticancer drugs in locally advanced human malignancies
    • T.S. Herman, B.A. Teicher, M. Jochelson, J. Clark, G. Svensson, and C.N. Coleman Rationale for use of local hyperthermia with radiation-therapy and selected anticancer drugs in locally advanced human malignancies Int. J. Hyperth. 4 1988 143 158
    • (1988) Int. J. Hyperth. , vol.4 , pp. 143-158
    • Herman, T.S.1    Teicher, B.A.2    Jochelson, M.3    Clark, J.4    Svensson, G.5    Coleman, C.N.6
  • 2
    • 84888395801 scopus 로고    scopus 로고
    • Heating efficiency in magnetic nanoparticle hyperthermia
    • A.E. Deatsch, and B.A. Evans Heating efficiency in magnetic nanoparticle hyperthermia J. Magn. Magn. Mater. 354 2014 163 172
    • (2014) J. Magn. Magn. Mater. , vol.354 , pp. 163-172
    • Deatsch, A.E.1    Evans, B.A.2
  • 5
    • 65249159529 scopus 로고    scopus 로고
    • Theory of magnetic fluid heating with an alternating magnetic field with temperature dependent materials properties for self-regulated heating
    • C.L. Ondeck, A.H. Habib, P. Ohodnicki, K. Miller, C.A. Sawyer, P. Chaudhary, and M.E. McHenry Theory of magnetic fluid heating with an alternating magnetic field with temperature dependent materials properties for self-regulated heating J. Appl. Phys. 105 2009 07B324
    • (2009) J. Appl. Phys. , vol.105 , pp. 07B324
    • Ondeck, C.L.1    Habib, A.H.2    Ohodnicki, P.3    Miller, K.4    Sawyer, C.A.5    Chaudhary, P.6    McHenry, M.E.7
  • 7
    • 16244406244 scopus 로고    scopus 로고
    • Use of magnetic nanoparticle heating in the treatment of breast cancer
    • I. Hilger, R. Hergt, and W.A. Kaiser Use of magnetic nanoparticle heating in the treatment of breast cancer IEE Proc.: Nanobiotechnol. 152 2005 33 39
    • (2005) IEE Proc.: Nanobiotechnol. , vol.152 , pp. 33-39
    • Hilger, I.1    Hergt, R.2    Kaiser, W.A.3
  • 8
  • 9
    • 65249169976 scopus 로고    scopus 로고
    • Experimental and theoretical investigation of cubic FeCo nanoparticles for magnetic hyperthermia
    • Y. Jing, H. Sohn, T. Kline, R.H. Victora, and J.-P. Wang Experimental and theoretical investigation of cubic FeCo nanoparticles for magnetic hyperthermia J. Appl. Phys. 105 2009 07B305
    • (2009) J. Appl. Phys. , vol.105 , pp. 07B305
    • Jing, Y.1    Sohn, H.2    Kline, T.3    Victora, R.H.4    Wang, J.-P.5
  • 10
    • 33646753994 scopus 로고    scopus 로고
    • Heat deposition in iron oxide and iron nanoparticles for localized hyperthermia
    • I. Baker, Q. Zeng, W. Li, and C.R. Sullivan Heat deposition in iron oxide and iron nanoparticles for localized hyperthermia J. Appl. Phys. 99 2006 08H106
    • (2006) J. Appl. Phys. , vol.99 , pp. 08H106
    • Baker, I.1    Zeng, Q.2    Li, W.3    Sullivan, C.R.4
  • 11
    • 0038636162 scopus 로고    scopus 로고
    • Tumor regression by combined immunotherapy and hyperthermia using magnetic nanoparticles in an experimental subcutaneous murine melanoma
    • A. Ito, K. Tanaka, M. Kondo, M. Shinkai, H. Honda, K. Matsumoto, T. Saida, and T. Kobayashi Tumor regression by combined immunotherapy and hyperthermia using magnetic nanoparticles in an experimental subcutaneous murine melanoma Cancer Sci. 94 2003 308 313
    • (2003) Cancer Sci. , vol.94 , pp. 308-313
    • Ito, A.1    Tanaka, K.2    Kondo, M.3    Shinkai, M.4    Honda, H.5    Matsumoto, K.6    Saida, T.7    Kobayashi, T.8
  • 14
    • 84855444133 scopus 로고    scopus 로고
    • Ferrite-based magnetic nanofluids used in hyperthermia applications
    • I. Sharifi, H. Shokrollahi, and S. Amiri Ferrite-based magnetic nanofluids used in hyperthermia applications J. Magn. Magn. Mater. 324 2012 903 915
    • (2012) J. Magn. Magn. Mater. , vol.324 , pp. 903-915
    • Sharifi, I.1    Shokrollahi, H.2    Amiri, S.3
  • 15
    • 77953600596 scopus 로고    scopus 로고
    • Present status and prospects of magnetite nanoparticles-based hyperthermia
    • B. Jeyadevan Present status and prospects of magnetite nanoparticles-based hyperthermia J. Ceram. Soc. Jpn. 118 2010 391 401
    • (2010) J. Ceram. Soc. Jpn. , vol.118 , pp. 391-401
    • Jeyadevan, B.1
  • 18
    • 79955439211 scopus 로고    scopus 로고
    • Use of trapezoidal waves and complementary static fields incident on magnetic nanoparticles to induce magnetic hyperthermia for therapeutic cancer treatment
    • S.M. Morgan, H. Sohn, and R.H. Victora Use of trapezoidal waves and complementary static fields incident on magnetic nanoparticles to induce magnetic hyperthermia for therapeutic cancer treatment J. Appl. Phys. 109 2011 07B305
    • (2011) J. Appl. Phys. , vol.109 , pp. 07B305
    • Morgan, S.M.1    Sohn, H.2    Victora, R.H.3
  • 19
    • 33748458601 scopus 로고    scopus 로고
    • 4 particles in hyperthermia
    • 4 particles in hyperthermia J. Magn. Magn. Mater. 307 2006 85 90
    • (2006) J. Magn. Magn. Mater. , vol.307 , pp. 85-90
    • Skumiel, A.1
  • 24
    • 33947149071 scopus 로고    scopus 로고
    • Magnetic particle hyperthermia - Biophysical limitations of a visionary tumour therapy
    • R. Hergt, and S. Dutz Magnetic particle hyperthermia - biophysical limitations of a visionary tumour therapy J. Magn. Magn. Mater. 311 2007 187 192
    • (2007) J. Magn. Magn. Mater. , vol.311 , pp. 187-192
    • Hergt, R.1    Dutz, S.2
  • 25
    • 77949903841 scopus 로고    scopus 로고
    • Validity limits of the Neel relaxation model of magnetic nanoparticles for hyperthermia
    • R. Hergt, S. Dutz, and M. Zeisberger Validity limits of the Neel relaxation model of magnetic nanoparticles for hyperthermia Nanotechnology 21 2010 015706
    • (2010) Nanotechnology , vol.21 , pp. 015706
    • Hergt, R.1    Dutz, S.2    Zeisberger, M.3
  • 27
    • 84939991727 scopus 로고    scopus 로고
    • Improved magnetic induction heating of nanoferrites for hyperthermia applications: Correlation with colloidal stability and magneto-structural properties
    • V.M. Khot, A.B. Salunkhe, J.M. Ruso, and S.H. Pawar Improved magnetic induction heating of nanoferrites for hyperthermia applications: Correlation with colloidal stability and magneto-structural properties J. Magn. Magn. Mater. 384 2015 335 343
    • (2015) J. Magn. Magn. Mater. , vol.384 , pp. 335-343
    • Khot, V.M.1    Salunkhe, A.B.2    Ruso, J.M.3    Pawar, S.H.4
  • 28
    • 84923114318 scopus 로고    scopus 로고
    • Same magnetic nanoparticles, different heating behavior: Influence of the arrangement and dispersive medium
    • I. Andreu, E. Natividad, L. Solozábal, and O. Roubeau Same magnetic nanoparticles, different heating behavior: Influence of the arrangement and dispersive medium J. Magn. Magn. Mater. 380 2015 341 346
    • (2015) J. Magn. Magn. Mater. , vol.380 , pp. 341-346
    • Andreu, I.1    Natividad, E.2    Solozábal, L.3    Roubeau, O.4
  • 29
    • 14844307120 scopus 로고    scopus 로고
    • Preparation of magnetic nanoparticles with large specific loss power for heating applications
    • R. Muller, R. Hergt, M. Zeisberger, and W. Gawalek Preparation of magnetic nanoparticles with large specific loss power for heating applications J. Magn. Magn. Mater. 289 2005 13 16
    • (2005) J. Magn. Magn. Mater. , vol.289 , pp. 13-16
    • Muller, R.1    Hergt, R.2    Zeisberger, M.3    Gawalek, W.4
  • 32
    • 67650672138 scopus 로고    scopus 로고
    • Biomedical applications of distally controlled magnetic nanoparticles
    • J.L. Corchero, and A. Villaverde Biomedical applications of distally controlled magnetic nanoparticles Trends Biotechnol. 27 2009 468 476
    • (2009) Trends Biotechnol. , vol.27 , pp. 468-476
    • Corchero, J.L.1    Villaverde, A.2
  • 33
    • 20944450335 scopus 로고    scopus 로고
    • Preparation and investigation of potentiality of different soft ferrites for hyperthermia applications
    • J. Giri, P. Pradhan, T. Sriharsha, and D. Bahadur Preparation and investigation of potentiality of different soft ferrites for hyperthermia applications J. Appl. Phys. 97 2005 10Q916
    • (2005) J. Appl. Phys. , vol.97 , pp. 10Q916
    • Giri, J.1    Pradhan, P.2    Sriharsha, T.3    Bahadur, D.4
  • 34
    • 79960231793 scopus 로고    scopus 로고
    • Magnetic nanomaterials for hyperthermiabased therapy and controlled drug delivery
    • C.S.S.R. Kumar, and F. Mohammad Magnetic nanomaterials for hyperthermiabased therapy and controlled drug delivery Adv. Drug. Deliv. Rev. 63 2011 789 808
    • (2011) Adv. Drug. Deliv. Rev. , vol.63 , pp. 789-808
    • Kumar, C.S.S.R.1    Mohammad, F.2
  • 35
    • 33646755365 scopus 로고    scopus 로고
    • Heating ability of magnetite nanobeads with various sizes for magnetic hyperthermia at 120 kHz, a noninvasive frequency
    • K. Okawa, M. Sekine, M. Maeda, M. Tada, M. Abe, N. Matsushita, K. Nishio, and H. Handa Heating ability of magnetite nanobeads with various sizes for magnetic hyperthermia at 120 kHz, a noninvasive frequency J. Appl. Phys. 99 2006 08H102
    • (2006) J. Appl. Phys. , vol.99 , pp. 08H102
    • Okawa, K.1    Sekine, M.2    Maeda, M.3    Tada, M.4    Abe, M.5    Matsushita, N.6    Nishio, K.7    Handa, H.8
  • 39
    • 70349649337 scopus 로고    scopus 로고
    • 4 based materials: A step toward self-controlled hyperthermia applications
    • 064701
    • 4 based materials: A step toward self-controlled hyperthermia applications J. Appl. Phys. 106 2009 064701
    • (2009) J. Appl. Phys. , vol.106
    • Ahmad, S.N.1    Shaheen, S.A.2
  • 41
    • 33847723425 scopus 로고    scopus 로고
    • Size-Sorted Anionic Iron Oxide Nanomagnets as Colloidal Mediators for Magnetic Hyperthermia
    • J.-P. Fortin, C. Wilhelm, J. Servais, C. Menager, J.-C. Bacri, and F. Gazeau Size-Sorted Anionic Iron Oxide Nanomagnets as Colloidal Mediators for Magnetic Hyperthermia J. Am. Chem. Soc. 129 2007 2628 2635
    • (2007) J. Am. Chem. Soc. , vol.129 , pp. 2628-2635
    • Fortin, J.-P.1    Wilhelm, C.2    Servais, J.3    Menager, C.4    Bacri, J.-C.5    Gazeau, F.6
  • 43
    • 33749513171 scopus 로고    scopus 로고
    • Magnetic particle hyperthermia: Nanoparticle magnetism and materials development for cancer therapy
    • R. Hergt, S. Dutz, R. Muller, and M. Zeisberger Magnetic particle hyperthermia: nanoparticle magnetism and materials development for cancer therapy J. Phys.: Condens. Matter 18 2006 S2919 S2934
    • (2006) J. Phys.: Condens. Matter , vol.18 , pp. S2919-S2934
    • Hergt, R.1    Dutz, S.2    Muller, R.3    Zeisberger, M.4
  • 46
    • 0344767786 scopus 로고
    • Low frequency hyperthermia
    • I.A. Brezovich Low frequency hyperthermia Med. Phys. Monogr. 16 1988 82 111
    • (1988) Med. Phys. Monogr. , vol.16 , pp. 82-111
    • Brezovich, I.A.1
  • 47
    • 84924787560 scopus 로고    scopus 로고
    • Unified model of hyperthermia via hysteresis heating in systems of interacting magnetic nanoparticles
    • S. Ruta, R. Chantrell, and O. Hovorka Unified model of hyperthermia via hysteresis heating in systems of interacting magnetic nanoparticles Sci. Rep. 5 2015 9090
    • (2015) Sci. Rep. , vol.5 , pp. 9090
    • Ruta, S.1    Chantrell, R.2    Hovorka, O.3
  • 48
    • 84902436876 scopus 로고    scopus 로고
    • Enhanced thermal stability of phosphate capped manetite nanoparticles
    • T. Muthukumaran, and J. Philip Enhanced thermal stability of phosphate capped manetite nanoparticles J. Appl. Phys. 115 2014 224304
    • (2014) J. Appl. Phys. , vol.115 , pp. 224304
    • Muthukumaran, T.1    Philip, J.2
  • 49
    • 0003088679 scopus 로고
    • Theorie du Trainage Magnetique des Ferromagnetiques en Grains Fins avec Applications aux Terres Cuites (in French)
    • L. Neel Theorie du Trainage Magnetique des Ferromagnetiques en Grains Fins avec Applications aux Terres Cuites (in French) Ann. Geophys. 5 1949 99 136
    • (1949) Ann. Geophys. , vol.5 , pp. 99-136
    • Neel, L.1
  • 50
    • 36149026446 scopus 로고
    • Thermal fluctuations of a single-domain particle
    • W.F. Brown Thermal fluctuations of a single-domain particle Phys. Rev. 130 1963 1677 1686
    • (1963) Phys. Rev. , vol.130 , pp. 1677-1686
    • Brown, W.F.1
  • 52
    • 84856508259 scopus 로고    scopus 로고
    • Role of dipole-dipole interactions for hyperthermia heating of magnetic nanoparticle ensembles
    • 045435
    • C. Haase, and U. Nowak Role of dipole-dipole interactions for hyperthermia heating of magnetic nanoparticle ensembles Phys. Rev. B 85 2012 045435
    • (2012) Phys. Rev. B , vol.85
    • Haase, C.1    Nowak, U.2
  • 53
    • 0012262743 scopus 로고    scopus 로고
    • Heating magnetic fluid with alternating magnetic field
    • R.E. Rosensweig Heating magnetic fluid with alternating magnetic field J. Magn. Magn. Mater. 252 2002 370 374
    • (2002) J. Magn. Magn. Mater. , vol.252 , pp. 370-374
    • Rosensweig, R.E.1
  • 54
    • 84860530561 scopus 로고    scopus 로고
    • On the energy conversion efficiency in magnetic hyperthermia applications: A new perspective to analyze the departure from the linear regime
    • G.T. Landi, and A.F. Bakuzis On the energy conversion efficiency in magnetic hyperthermia applications: A new perspective to analyze the departure from the linear regime J. Appl. Phys. 111 2012 083915
    • (2012) J. Appl. Phys. , vol.111 , pp. 083915
    • Landi, G.T.1    Bakuzis, A.F.2
  • 55
    • 84859740865 scopus 로고    scopus 로고
    • Hyperthermic effects of dissipative structures of magnetic nanoparticles in large alternating magnetic fields
    • H. Mamiya, and B. Jeyadevan Hyperthermic effects of dissipative structures of magnetic nanoparticles in large alternating magnetic fields Sci. Rep. 1 2011 157
    • (2011) Sci. Rep. , vol.1 , pp. 157
    • Mamiya, H.1    Jeyadevan, B.2
  • 57
    • 76249088812 scopus 로고    scopus 로고
    • Determination of the heating effect of magnetic fluid in alternating magnetic field
    • M. Bekovic, and A. Hamler Determination of the heating effect of magnetic fluid in alternating magnetic field IEEE Trans. Magn. 46 2010 552 555
    • (2010) IEEE Trans. Magn. , vol.46 , pp. 552-555
    • Bekovic, M.1    Hamler, A.2
  • 58
    • 59349093225 scopus 로고    scopus 로고
    • Magnetic hyperthermia in single-domain monodisperse FeCo nanoparticles: Evidences for Stoner-Wohlfarth behavior and large losses
    • 023911
    • L.-M. Lacroix, R.B. Malaki, J. Carrey, S. Lachaize, M. Respaud, G.F. Goya, and B. Chaudret Magnetic hyperthermia in single-domain monodisperse FeCo nanoparticles: Evidences for Stoner-Wohlfarth behavior and large losses J. Appl. Phys. 105 2009 023911
    • (2009) J. Appl. Phys. , vol.105
    • Lacroix, L.-M.1    Malaki, R.B.2    Carrey, J.3    Lachaize, S.4    Respaud, M.5    Goya, G.F.6    Chaudret, B.7
  • 59
    • 62949152088 scopus 로고    scopus 로고
    • Synthesis and stability of functionalized iron oxide nanoparticles using organophosphorus coupling agents
    • S. Mohapatra, and P. Pramanik Synthesis and stability of functionalized iron oxide nanoparticles using organophosphorus coupling agents Colloids Surf., A 339 2009 35 42
    • (2009) Colloids Surf., A , vol.339 , pp. 35-42
    • Mohapatra, S.1    Pramanik, P.2
  • 60
    • 36149021963 scopus 로고
    • Infrared spectra of ferrites
    • R.D. Waldron Infrared spectra of ferrites Phys. Rev. 99 1955 1727 1735
    • (1955) Phys. Rev. , vol.99 , pp. 1727-1735
    • Waldron, R.D.1
  • 62
    • 77949790030 scopus 로고    scopus 로고
    • Specific absorption rate and magnetic properties of ferrofluids with interaction effects at low concentration
    • A. Urtizberea, E. Natividad, A. Arizaga, M. Castro, and A. Mediano Specific absorption rate and magnetic properties of ferrofluids with interaction effects at low concentration J. Phys. Chem. C. 114 2010 4916 4922
    • (2010) J. Phys. Chem. C. , vol.114 , pp. 4916-4922
    • Urtizberea, A.1    Natividad, E.2    Arizaga, A.3    Castro, M.4    Mediano, A.5
  • 64
    • 84892924833 scopus 로고    scopus 로고
    • Role of dipolar interaction in magnetic hyperthermia
    • G.T. Landi Role of dipolar interaction in magnetic hyperthermia Phys. Rev. B 89 2014 014403
    • (2014) Phys. Rev. B , vol.89 , pp. 014403
    • Landi, G.T.1
  • 67
    • 0041670033 scopus 로고    scopus 로고
    • Two mechanisms and a scaling relation for dynamics in ferrofluids
    • J. Zhang, C. Boyd, and W. Luo Two mechanisms and a scaling relation for dynamics in ferrofluids Phys. Rev. Lett. 77 1996 390 393
    • (1996) Phys. Rev. Lett. , vol.77 , pp. 390-393
    • Zhang, J.1    Boyd, C.2    Luo, W.3
  • 68
    • 3643148153 scopus 로고
    • Superparamagnetic relaxation of weekly interacting particles
    • S. Morup, and E. Tronc Superparamagnetic relaxation of weekly interacting particles Phys. Rev. Lett. 72 1994 3278 3281
    • (1994) Phys. Rev. Lett. , vol.72 , pp. 3278-3281
    • Morup, S.1    Tronc, E.2
  • 70
    • 1642601762 scopus 로고    scopus 로고
    • Investigation of Weissenberg effect in ferrofluids under microgravity conditions
    • K. Melzner, and S. Odenbach Investigation of Weissenberg effect in ferrofluids under microgravity conditions J. Magn. Magn. Mater. 252 2002 250 252
    • (2002) J. Magn. Magn. Mater. , vol.252 , pp. 250-252
    • Melzner, K.1    Odenbach, S.2
  • 71
    • 2442558490 scopus 로고
    • Observation of association in a ferromagnetic colloid
    • C.F. Hayes Observation of association in a ferromagnetic colloid J. Colloid Interface Sci. 52 1975 239 243
    • (1975) J. Colloid Interface Sci. , vol.52 , pp. 239-243
    • Hayes, C.F.1
  • 72
    • 80054760179 scopus 로고    scopus 로고
    • Tuning of thermal conductivity and rheology of nanofluids using an external stimulus
    • P.D. Shima, and J. Philip Tuning of thermal conductivity and rheology of nanofluids using an external stimulus J. Phys. Chem. C. 115 2011 20097 20104
    • (2011) J. Phys. Chem. C. , vol.115 , pp. 20097-20104
    • Shima, P.D.1    Philip, J.2
  • 73
    • 77958113379 scopus 로고    scopus 로고
    • Influence of aggregation on thermal conductivity in stable and unstable nanofluids
    • P.D. Shima, J. Philip, and B. Raj Influence of aggregation on thermal conductivity in stable and unstable nanofluids Appl. Phys. Lett. 97 2010 153113
    • (2010) Appl. Phys. Lett. , vol.97 , pp. 153113
    • Shima, P.D.1    Philip, J.2    Raj, B.3
  • 74
    • 84952690925 scopus 로고    scopus 로고
    • Hyperthermia of magnetic nanoparticles: Experimental study of the role of aggregation
    • C. Guibert, V. Dupuis, V. Peyre, and J. Fresnais Hyperthermia of magnetic nanoparticles: experimental study of the role of aggregation J. Phys. Chem. C. 119 2015 28148 28154
    • (2015) J. Phys. Chem. C. , vol.119 , pp. 28148-28154
    • Guibert, C.1    Dupuis, V.2    Peyre, V.3    Fresnais, J.4
  • 75
    • 84896469350 scopus 로고    scopus 로고
    • Near infrared light absorption in magnetic nanoemulsion under external magneticfield
    • S. Brojabasi, V. Mahendran, B.B. Lahiri, and J. Philip Near infrared light absorption in magnetic nanoemulsion under external magneticfield Opt. Commun. 323 2014 54 60
    • (2014) Opt. Commun. , vol.323 , pp. 54-60
    • Brojabasi, S.1    Mahendran, V.2    Lahiri, B.B.3    Philip, J.4
  • 76
    • 85027916751 scopus 로고    scopus 로고
    • Bimodal distribution of the magnetic dipole moment in nanoparticles with a monomodal distribution of the physical size
    • J.V. Rijssel, B.W.M. Kuipers, and B.H. Erné Bimodal distribution of the magnetic dipole moment in nanoparticles with a monomodal distribution of the physical size J. Magn. Magn. Mater. 380 2015 325 329
    • (2015) J. Magn. Magn. Mater. , vol.380 , pp. 325-329
    • Rijssel, J.V.1    Kuipers, B.W.M.2    Erné, B.H.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.