메뉴 건너뛰기




Volumn 67, Issue 1, 2016, Pages 1-13

The ins and outs of CO2

Author keywords

Aquaporins; Bicarbonate; C4; Carbon concentrating mechanisms; Carbon dioxide; Crassulacean acid metabolism; Leakage; Lipid bilayer; Permeability

Indexed keywords

CARBON DIOXIDE; CARBONIC ACID DERIVATIVE;

EID: 84954535643     PISSN: 00220957     EISSN: 14602431     Source Type: Journal    
DOI: 10.1093/jxb/erv451     Document Type: Article
Times cited : (85)

References (133)
  • 1
    • 0031785343 scopus 로고    scopus 로고
    • Uptake of HCO3-and CO2 in cells and chloroplasts from the microalgae Chlamydomonas reinhardtii and Dunaliella tertiolecta
    • Amoroso G, Sültemeyer D, Thyssen C, Fock HP. 1998. Uptake of HCO3-and CO2 in cells and chloroplasts from the microalgae Chlamydomonas reinhardtii and Dunaliella tertiolecta. Plant Physiology 116, 193-201.
    • (1998) Plant Physiology , vol.116 , pp. 193-201
    • Amoroso, G.1    Sültemeyer, D.2    Thyssen, C.3    Fock, H.P.4
  • 2
    • 0000640714 scopus 로고
    • A model for HCO3-accumulation and photosynthesis in the cyanobacterium Synechococcus sp
    • Badger MR, Bassett M, Comins HN. 1985. A model for HCO3-accumulation and photosynthesis in the cyanobacterium Synechococcus sp. Plant Physiology 77, 465-471.
    • (1985) Plant Physiology , vol.77 , pp. 465-471
    • Badger, M.R.1    Bassett, M.2    Comins, H.N.3
  • 3
    • 0028050899 scopus 로고
    • Measurements of CO2 and HCO3-fluxes in cyanobacteria and microalgae during steady-state photosynthesis
    • Badger MR, Palmqvist K, Yu JW. 1994. Measurements of CO2 and HCO3-fluxes in cyanobacteria and microalgae during steady-state photosynthesis. Physiologia Plantarum 90, 529-536.
    • (1994) Physiologia Plantarum , vol.90 , pp. 529-536
    • Badger, M.R.1    Palmqvist, K.2    Yu, J.W.3
  • 4
    • 0037318701 scopus 로고    scopus 로고
    • CO2 concentrating mechanism in cyanobacteria: Molecular components, their diversity and evolution
    • Badger MR, Price GD. 2003. CO2 concentrating mechanism in cyanobacteria: molecular components, their diversity and evolution. Journal of Experimental Botany 54, 609-622.
    • (2003) Journal of Experimental Botany , vol.54 , pp. 609-622
    • Badger, M.R.1    Price, G.D.2
  • 5
    • 84985234158 scopus 로고
    • CO2 accumulation by Chlorella saccharophila (Chlorophyceae) at low external pH: Evidence for active transport of inorganic carbon at the chloroplast envelope
    • Beardall J. 1981. CO2 accumulation by Chlorella saccharophila (Chlorophyceae) at low external pH: evidence for active transport of inorganic carbon at the chloroplast envelope. Journal of Phycology 17, 371-373.
    • (1981) Journal of Phycology , vol.17 , pp. 371-373
    • Beardall, J.1
  • 6
    • 84898058106 scopus 로고    scopus 로고
    • Acclimation of low light by C4 maize: Implications for bundle sheath leakiness
    • Bellasio C, Griffiths H. 2014. Acclimation of low light by C4 maize: implications for bundle sheath leakiness. Plant Cell and Environment 37, 1046-1058.
    • (2014) Plant Cell and Environment , vol.37 , pp. 1046-1058
    • Bellasio, C.1    Griffiths, H.2
  • 7
    • 79953227026 scopus 로고    scopus 로고
    • Intrinsic CO2 permeability of cell membranes and potential biological relevance of CO2 channels
    • Boron WF, Endeward V, Gros G, Musa-Aziz R, Pohl P. 2011. Intrinsic CO2 permeability of cell membranes and potential biological relevance of CO2 channels. ChemPhysChem 12, 1017-1019.
    • (2011) ChemPhysChem , vol.12 , pp. 1017-1019
    • Boron, W.F.1    Endeward, V.2    Gros, G.3    Musa-Aziz, R.4    Pohl, P.5
  • 8
    • 0002717111 scopus 로고
    • Bicarbonate ions as a source of carbon dioxide for photosynthesis
    • Briggs GE. 1959. Bicarbonate ions as a source of carbon dioxide for photosynthesis. Journal of Experimental Botany 10, 90-92.
    • (1959) Journal of Experimental Botany , vol.10 , pp. 90-92
    • Briggs, G.E.1
  • 10
    • 0000258887 scopus 로고
    • Relationship between stomatal behaviour and internal carbon dioxide concentrations in Crassulacean Metabolism plants
    • Cockburn W, Ting IP, Sternberg LO. 1979. Relationship between stomatal behaviour and internal carbon dioxide concentrations in Crassulacean Metabolism plants. Plant Physiology 63, 1029-1032.
    • (1979) Plant Physiology , vol.63 , pp. 1029-1032
    • Cockburn, W.1    Ting, I.P.2    Sternberg, L.O.3
  • 11
    • 0003105666 scopus 로고
    • Photosynthetic carbon assimilation in a shootless orchid, Chiloschista usenoides (DON) LDL. A variant on crassulacean acid metabolism
    • Cockburn W, Goh CJ, Avadhani, PN. 1985. Photosynthetic carbon assimilation in a shootless orchid, Chiloschista usenoides (DON) LDL. A variant on crassulacean acid metabolism. Plant Physiology 77, 83-86.
    • (1985) Plant Physiology , vol.77 , pp. 83-86
    • Cockburn, W.1    Goh, C.J.2    Avadhani, P.N.3
  • 12
    • 84981594735 scopus 로고
    • CO2 uptake and transport in leaf mesophyll cells
    • Colman B, Espie GA. 1985. CO2 uptake and transport in leaf mesophyll cells. Plant Cell and Environment 8, 449-457.
    • (1985) Plant Cell and Environment , vol.8 , pp. 449-457
    • Colman, B.1    Espie, G.A.2
  • 13
    • 84940000046 scopus 로고    scopus 로고
    • High prevalence of diffusive uptake by CO2 by macroalgae in a temperate subtidal system
    • Cornwall CE, Revill AT, Hurd CL. 2015. High prevalence of diffusive uptake by CO2 by macroalgae in a temperate subtidal system. Photosynthesis Research 124, 181-190.
    • (2015) Photosynthesis Research , vol.124 , pp. 181-190
    • Cornwall, C.E.1    Revill, A.T.2    Hurd, C.L.3
  • 14
    • 84856957891 scopus 로고    scopus 로고
    • Physiological characterization and light response of the CO2-concentrating mechanism in the filamentous cyanobacterium Leptolyngbya sp. CPPP 696
    • de Araujo ED, Patel J, de Araujo C, Rogers SP, Short SM, Cambell DA, Espie GS. 2011. Physiological characterization and light response of the CO2-concentrating mechanism in the filamentous cyanobacterium Leptolyngbya sp. CPPP 696. Photosynthesis Research 109, 95-103.
    • (2011) Photosynthesis Research , vol.109 , pp. 95-103
    • De Araujo, E.D.1    Patel, J.2    De Araujo, C.3    Rogers, S.P.4    Short, S.M.5    Cambell, D.A.6    Espie, G.S.7
  • 16
    • 0035668267 scopus 로고    scopus 로고
    • Evidence for active CO2 uptake by a CO2-ATPase in the acidophilic green alga Eremosphaera viridis
    • Deveau JST, Lew RR, Colman B. 2001. Evidence for active CO2 uptake by a CO2-ATPase in the acidophilic green alga Eremosphaera viridis. Canadian Journal of Botany 79, 1274-1281.
    • (2001) Canadian Journal of Botany , vol.79 , pp. 1274-1281
    • Deveau, J.S.T.1    Lew, R.R.2    Colman, B.3
  • 17
    • 84940665785 scopus 로고    scopus 로고
    • Cellular inorganic carbon fluxes in Trichodesmium: A combined approach using measurements and modelling
    • Eichner M, Thoms S, Kranz SA, Rost B. 2015. Cellular inorganic carbon fluxes in Trichodesmium: A combined approach using measurements and modelling. Journal of Experimental Botany 66, 749-759.
    • (2015) Journal of Experimental Botany , vol.66 , pp. 749-759
    • Eichner, M.1    Thoms, S.2    Kranz, S.A.3    Rost, B.4
  • 18
    • 55949125406 scopus 로고    scopus 로고
    • The photorespiratory glycolate metabolism is essential for cyanobacteria and might have been transferred endosymbiotically to plants
    • Eisenhut M, Ruth W, Halmovich M, Bauwe H, Kaplan A, Hagemann M. 2008. The photorespiratory glycolate metabolism is essential for cyanobacteria and might have been transferred endosymbiotically to plants. Proceedings of the National Academy of Science USA 105, 17199-17204.
    • (2008) Proceedings of the National Academy of Science USA , vol.105 , pp. 17199-17204
    • Eisenhut, M.1    Ruth, W.2    Halmovich, M.3    Bauwe, H.4    Kaplan, A.5    Hagemann, M.6
  • 19
    • 84893619407 scopus 로고    scopus 로고
    • How does carbon dioxide permeate cell membranes? A discussion of concepts, results and methods
    • Endeward V, Al-Samir S, Itel F, Gros G. 2014. How does carbon dioxide permeate cell membranes? A discussion of concepts, results and methods. Frontiers in Physiology 4, Article 382, pp.1-21.
    • (2014) Frontiers in Physiology , vol.4 , pp. 1-21
    • Endeward, V.1    Al-Samir, S.2    Itel, F.3    Gros, G.4
  • 20
    • 0000269539 scopus 로고
    • Inorganic carbon uptake during photosynthesis. I. A theoretical analysis using the isotope disequilibrium technique
    • Espie GS, Colman B. 1986. Inorganic carbon uptake during photosynthesis. I. A theoretical analysis using the isotope disequilibrium technique. Plant Physiology 80, 863-869.
    • (1986) Plant Physiology , vol.80 , pp. 863-869
    • Espie, G.S.1    Colman, B.2
  • 21
    • 0000269539 scopus 로고
    • Inorganic carbon uptake during photosynthesis. II. Uptake by isolated Asparagus mesophyll cells during isotope disequilibrium
    • Espie GS, Owttrim GW, Colman B. 1986. Inorganic carbon uptake during photosynthesis. II. Uptake by isolated Asparagus mesophyll cells during isotope disequilibrium. Plant Physiology 80, 870-876.
    • (1986) Plant Physiology , vol.80 , pp. 870-876
    • Espie, G.S.1    Owttrim, G.W.2    Colman, B.3
  • 23
    • 84969413043 scopus 로고    scopus 로고
    • Primary production in the biosphere: Integrating terrestrial and oceanic components
    • Field CB, Behrenfeld J, Randerson PG, Falkowski PG. 1998. Primary production in the biosphere: integrating terrestrial and oceanic components. Science 29, 737-740.
    • (1998) Science , vol.29 , pp. 737-740
    • Field, C.B.1    Behrenfeld, J.2    Randerson, P.G.3    Falkowski, P.G.4
  • 25
    • 0001595224 scopus 로고
    • CO2 concentrating mechanism of C4 photosynthesis: Permeability of isolated bundle sheath cells to inorganic carbon
    • Furbank RT, Jenkins CLD, Hatch MD. 1989. CO2 concentrating mechanism of C4 photosynthesis: permeability of isolated bundle sheath cells to inorganic carbon. Plant Physiology 91, 1364-1371.
    • (1989) Plant Physiology , vol.91 , pp. 1364-1371
    • Furbank, R.T.1    Jenkins, C.L.D.2    Hatch, M.D.3
  • 26
    • 20444389072 scopus 로고    scopus 로고
    • CO2 concentrating mechanisms in algae: Mechanisms, environmental modulation, and evolution
    • Giordano M, Beardall J, Raven JA. 2005. CO2 concentrating mechanisms in algae: mechanisms, environmental modulation, and evolution. Annual Review of Plant Biology 6, 99-131.
    • (2005) Annual Review of Plant Biology , vol.6 , pp. 99-131
    • Giordano, M.1    Beardall, J.2    Raven, J.A.3
  • 27
    • 0020470527 scopus 로고
    • A comparison of photosynthesis in two thalloid liverworts
    • Green TGA, Snelgar WP. 1982. A comparison of photosynthesis in two thalloid liverworts. Oecologia 54, 275-280.
    • (1982) Oecologia , vol.54 , pp. 275-280
    • Green, T.G.A.1    Snelgar, W.P.2
  • 30
    • 2942700260 scopus 로고    scopus 로고
    • Overexpression of the barley aquaporin HvPIP2;1 increases internal CO2 conductance and CO2 assimilation in the leaves of transgenic rice plants
    • Hanba YT, Shibasaka M, Hayashi Y, Hayakawa T, Kasamo K, Terashima I, Katsuhara M. 2004. Overexpression of the barley aquaporin HvPIP2;1 increases internal CO2 conductance and CO2 assimilation in the leaves of transgenic rice plants. Plant and Cell Physiology 45, 521-529.
    • (2004) Plant and Cell Physiology , vol.45 , pp. 521-529
    • Hanba, Y.T.1    Shibasaka, M.2    Hayashi, Y.3    Hayakawa, T.4    Kasamo, K.5    Terashima, I.6    Katsuhara, M.7
  • 31
    • 0023657557 scopus 로고
    • CO2 is the inorganic carbon substrate of NADP+ malic enzymes from Zea mays and from wheat germ
    • Häusler RE, Holtum JAM, Latzko E. 1987. CO2 is the inorganic carbon substrate of NADP+ malic enzymes from Zea mays and from wheat germ. European Journal of Biochemistry 163, 619-626.
    • (1987) European Journal of Biochemistry , vol.163 , pp. 619-626
    • Häusler, R.E.1    Holtum, J.A.M.2    Latzko, E.3
  • 32
    • 80052260510 scopus 로고    scopus 로고
    • The Arabidopsis thaliana aquaporin AtPIP1;2 is a physiologically relevant CO2 transport facilitator
    • Heckwolf M, Pater D, Hanson DT, Kaldenhoff R. 2011. The Arabidopsis thaliana aquaporin AtPIP1;2 is a physiologically relevant CO2 transport facilitator. The Plant Journal 67, 795-804.
    • (2011) The Plant Journal , vol.67 , pp. 795-804
    • Heckwolf, M.1    Pater, D.2    Hanson, D.T.3    Kaldenhoff, R.4
  • 33
    • 84904718150 scopus 로고    scopus 로고
    • A chloroplast pump model for the CO2 concentrating mechanism in the diatom Phaeodactylum tricornutum
    • Hopkinson BM. 2014. A chloroplast pump model for the CO2 concentrating mechanism in the diatom Phaeodactylum tricornutum, Photosynthesis Research 121, 223-233.
    • (2014) Photosynthesis Research , vol.121 , pp. 223-233
    • Hopkinson, B.M.1
  • 35
    • 84914127006 scopus 로고    scopus 로고
    • The minimal CO2 concentrating mechanism of Prochlorococcus MED4 is effective and efficient
    • Hopkinson BM, Young JN, Tansik AL, Binder BJ. 2014. The minimal CO2 concentrating mechanism of Prochlorococcus MED4 is effective and efficient. Plant Physiology 166, 2205-2217.
    • (2014) Plant Physiology , vol.166 , pp. 2205-2217
    • Hopkinson, B.M.1    Young, J.N.2    Tansik, A.L.3    Binder, B.J.4
  • 36
    • 0032431197 scopus 로고    scopus 로고
    • Comparative study of dissolved inorganic carbon and photosynthetic responses in Nannochloris (Chlorophyceae) and Nannochloropsis (Eustigmatophyceae) species
    • Huertas IE, Lubián LM. 1997. Comparative study of dissolved inorganic carbon and photosynthetic responses in Nannochloris (Chlorophyceae) and Nannochloropsis (Eustigmatophyceae) species. Canadian Journal of Botany 76, 1104-1108.
    • (1997) Canadian Journal of Botany , vol.76 , pp. 1104-1108
    • Huertas, I.E.1    Lubián, L.M.2
  • 38
    • 0033919066 scopus 로고    scopus 로고
    • Light-dependent bicarbonate uptake and CO2 efflux in the microalga Nannochloropsis gaditana
    • Huertas IE, Espie GS, Colman B, Lubián LM. 2000b. Light-dependent bicarbonate uptake and CO2 efflux in the microalga Nannochloropsis gaditana. Plants 211, 43-49.
    • (2000) Plants , vol.211 , pp. 43-49
    • Huertas, I.E.1    Espie, G.S.2    Colman, B.3    Lubián, L.M.4
  • 39
    • 0036740898 scopus 로고    scopus 로고
    • Mitochondrial-driven bicarbonate transport supports photosynthesis in a marine microalga
    • Huertas IE, Lubián LM, Espie GS. 2002. Mitochondrial-driven bicarbonate transport supports photosynthesis in a marine microalga. Plant Physiology 130, 284-291.
    • (2002) Plant Physiology , vol.130 , pp. 284-291
    • Huertas, I.E.1    Lubián, L.M.2    Espie, G.S.3
  • 40
    • 0000101788 scopus 로고
    • Glycine decarboxylase is confined to the bundle-sheath cells of leaves of C3-C4 intermediate species of Moricandia
    • Hylton CM, Rawsthorne S, Smith AM, Jones DA, Woolhouse HW. 1988. Glycine decarboxylase is confined to the bundle-sheath cells of leaves of C3-C4 intermediate species of Moricandia. Planta 175, 452-459.
    • (1988) Planta , vol.175 , pp. 452-459
    • Hylton, C.M.1    Rawsthorne, S.2    Smith, A.M.3    Jones, D.A.4    Woolhouse, H.W.5
  • 41
    • 84870337718 scopus 로고    scopus 로고
    • CO2 permeability of cell membranes is regulated by membrane cholesterol and protein gas channels
    • Itel F, Al-Samir S, Oberg F, et al. 2012. CO2 permeability of cell membranes is regulated by membrane cholesterol and protein gas channels. The FASEB Journal 26, 5182-5191.
    • (2012) The FASEB Journal , vol.26 , pp. 5182-5191
    • Itel, F.1    Al-Samir, S.2    Oberg, F.3
  • 42
    • 9844235608 scopus 로고
    • Form of inorganic carbon involved as a product and as an inhibitor in C4 photosynthesis
    • Jenkins CLD, Burnell JN, Hatch MD. 1987. Form of inorganic carbon involved as a product and as an inhibitor in C4 photosynthesis. Plant Physiology 85, 952-957.
    • (1987) Plant Physiology , vol.85 , pp. 952-957
    • Jenkins, C.L.D.1    Burnell, J.N.2    Hatch, M.D.3
  • 44
    • 84923682762 scopus 로고    scopus 로고
    • A refined model of water and CO2 membrane diffusion: Effects and contribution of sterols and proteins
    • Kai L, Kaldendorf R. 2014. A refined model of water and CO2 membrane diffusion: Effects and contribution of sterols and proteins. Scientific Reports 4, 6665. doi: 10.1028/srep06665.
    • (2014) Scientific Reports , vol.4 , pp. 6665
    • Kai, L.1    Kaldendorf, R.2
  • 45
    • 84969419067 scopus 로고    scopus 로고
    • The efficiency of the CO2-concentrating mechanism during single-cell C4 photosynthesis
    • King JL, Edwards GE, Cousins A. 2012. The efficiency of the CO2-concentrating mechanism during single-cell C4 photosynthesis. Plant Cell and Environment 33, 1935-1948.
    • (2012) Plant Cell and Environment , vol.33 , pp. 1935-1948
    • King, J.L.1    Edwards, G.E.2    Cousins, A.3
  • 46
    • 77955059169 scopus 로고    scopus 로고
    • The effect of light and CO2 on inorganic carbon uptake in the invasive aquatic CAM-plant Crassula helmsii
    • Klavsen SK, Maberly SC. 2010. The effect of light and CO2 on inorganic carbon uptake in the invasive aquatic CAM-plant Crassula helmsii. Functional Plant Biology 37, 727-747.
    • (2010) Functional Plant Biology , vol.37 , pp. 727-747
    • Klavsen, S.K.1    Maberly, S.C.2
  • 47
    • 0030821306 scopus 로고    scopus 로고
    • Sources of inorganic carbon for photosynthesis by three species of marine diatoms
    • Korb RE, Saville PJ. Johnston AM, Raven JA. 1997. Sources of inorganic carbon for photosynthesis by three species of marine diatoms. Journal of Phycology 33, 433-440.
    • (1997) Journal of Phycology , vol.33 , pp. 433-440
    • Korb, R.E.1    Saville Johnston, P.J.A.M.2    Raven, J.A.3
  • 49
    • 77956712501 scopus 로고    scopus 로고
    • Combined effects of CO2 and light on the N2 fixing cyanobacterium Trichodesmium IMS101: Physiological responses
    • Kranz SA, Levitan O, Richter K-U, Prasil O, Berman-Frank I, Rost B. 2010. Combined effects of CO2 and light on the N2 fixing cyanobacterium Trichodesmium IMS101: physiological responses. Plant Physiology 154, 334-345.
    • (2010) Plant Physiology , vol.154 , pp. 334-345
    • Kranz, S.A.1    Levitan, O.2    Richter, K.-U.3    Prasil, O.4    Berman-Frank, I.5    Rost, B.6
  • 50
    • 84912013343 scopus 로고    scopus 로고
    • Low temperature reduces the energetic requirement for the CO2 concentrating mechanism in diatoms
    • Kranz S, Young JN, Goldman J, Tortell PD, Bender M, Morel FMM. 2015. Low temperature reduces the energetic requirement for the CO2 concentrating mechanism in diatoms. New Phytologist 205, 192-201.
    • (2015) New Phytologist , vol.205 , pp. 192-201
    • Kranz, S.1    Young, J.N.2    Goldman, J.3    Tortell, P.D.4    Bender, M.5    Morel, F.M.M.6
  • 51
    • 84925231104 scopus 로고    scopus 로고
    • Bundlesheath leakiness in C4 photosynthesis: A careful balancing act between CO2 concentration and assimilation
    • Kromdijk J, Ubierna N, Cousins AB, Griffiths H. 2014. Bundlesheath leakiness in C4 photosynthesis: A careful balancing act between CO2 concentration and assimilation. Journal of Experimental Botany 65, 3443-3457.
    • (2014) Journal of Experimental Botany , vol.65 , pp. 3443-3457
    • Kromdijk, J.1    Ubierna, N.2    Cousins, A.B.3    Griffiths, H.4
  • 52
    • 0345412063 scopus 로고    scopus 로고
    • The effects of reduced and elevated CO2 and O2 on the seaweed, Lomentaria articulata
    • Kübler JE, Johnston AM, Raven JA. 1999. The effects of reduced and elevated CO2 and O2 on the seaweed, Lomentaria articulata. Plant, Cell and Environment 22, 1303-1310.
    • (1999) Plant, Cell and Environment , vol.22 , pp. 1303-1310
    • Kübler, J.E.1    Johnston, A.M.2    Raven, J.A.3
  • 53
    • 84908611110 scopus 로고    scopus 로고
    • The fitness of the environments of air and water for photosynthesis, growth, reproduction and dispersal of photoautotrophs: An evolutionary and biogeochemical perspective
    • Maberly SC. 2014. The fitness of the environments of air and water for photosynthesis, growth, reproduction and dispersal of photoautotrophs: an evolutionary and biogeochemical perspective. Aquatic Botany 118, 4-13.
    • (2014) Aquatic Botany , vol.118 , pp. 4-13
    • Maberly, S.C.1
  • 54
    • 0036326936 scopus 로고    scopus 로고
    • Freshwater angiosperm carbon concentrating mechanisms: Processes and patterns
    • Maberly SC, Madsen TV, 2002. Freshwater angiosperm carbon concentrating mechanisms: processes and patterns. Functional Plant Biology 29, 393-405.
    • (2002) Functional Plant Biology , vol.29 , pp. 393-405
    • Maberly, S.C.1    Madsen, T.V.2
  • 56
    • 0012658633 scopus 로고
    • External and internal CO2 transport in Lemanea: Interactions with the kinetics of ribulose bisphosphate carboxylase
    • MacFarlane JJ, Raven JA. 1985. External and internal CO2 transport in Lemanea: interactions with the kinetics of ribulose bisphosphate carboxylase. Journal of Experimental Botany 36, 610-622.
    • (1985) Journal of Experimental Botany , vol.36 , pp. 610-622
    • MacFarlane, J.J.1    Raven, J.A.2
  • 57
    • 0009825765 scopus 로고
    • Quantitative determination of the unstirred layer permeability and kinetic parameters of RUBISCO in Lemanea mamillosa
    • MacFarlane JJ, Raven JA. 1989. Quantitative determination of the unstirred layer permeability and kinetic parameters of RUBISCO in Lemanea mamillosa. Journal of Experimental Botany 40, 321-327.
    • (1989) Journal of Experimental Botany , vol.40 , pp. 321-327
    • MacFarlane, J.J.1    Raven, J.A.2
  • 58
    • 84981594153 scopus 로고
    • C, N and P nutrition of Lemanea mamillosa Kutz. (Batrachospermales, Rhodophyta) in the Dighty Burn, Angus, Scotland
    • MacFarlane JJ, Raven JA. 1990. C, N and P nutrition of Lemanea mamillosa Kutz. (Batrachospermales, Rhodophyta) in the Dighty Burn, Angus, Scotland. Plant, Cell and Environment 13, 1-13.
    • (1990) Plant, Cell and Environment , vol.13 , pp. 1-13
    • MacFarlane, J.J.1    Raven, J.A.2
  • 59
    • 0036172404 scopus 로고    scopus 로고
    • Novel gene products associated with NdhD3/D4-containing NDH1 complexes are involved in photosynthetic CO2 hydration in the cyanobacterium, Synechocystis sp
    • Maeda S-I, Badger MR, Price GD. 2002. Novel gene products associated with NdhD3/D4-containing NDH1 complexes are involved in photosynthetic CO2 hydration in the cyanobacterium, Synechocystis sp. Molecular Microbiology 43, 425-435.
    • (2002) Molecular Microbiology , vol.43 , pp. 425-435
    • Maeda, S.-I.1    Badger, M.R.2    Price, G.D.3
  • 60
    • 84899846336 scopus 로고    scopus 로고
    • Systems analysis of the CO2 concentrating mechanism in cyanobacteria
    • see also Correction published 29 April 2014
    • Mangan NM, Brenner MP. 2014. Systems analysis of the CO2 concentrating mechanism in cyanobacteria. ELife 3, e2043. doi: 10.7554/ eLife.02043. see also Correction published 29 April 2014.
    • (2014) ELife , vol.3 , pp. e2043
    • Mangan, N.M.1    Brenner, M.P.2
  • 61
    • 0031431241 scopus 로고    scopus 로고
    • Influx and efflux of inorganic carbon during steady-state photosynthesis of air-grown Anabaena variabilis
    • McGinn PJ, Coleman JR, Canvin DT. 1997. Influx and efflux of inorganic carbon during steady-state photosynthesis of air-grown Anabaena variabilis. Canadian Journal of Botany 75, 1913-1926.
    • (1997) Canadian Journal of Botany , vol.75 , pp. 1913-1926
    • McGinn, P.J.1    Coleman, J.R.2    Canvin, D.T.3
  • 63
    • 47249105012 scopus 로고    scopus 로고
    • To concentrate or ventilate. Carbon acquisition, isotope discrimination and physiological ecology of early land plant life forms
    • Meyer M, Seibt U, Griffiths H. 2008. To concentrate or ventilate. Carbon acquisition, isotope discrimination and physiological ecology of early land plant life forms. Philosophical Transactions of the Royal Society of London B 363, 2767-2778.
    • (2008) Philosophical Transactions of the Royal Society of London B , vol.363 , pp. 2767-2778
    • Meyer, M.1    Seibt, U.2    Griffiths, H.3
  • 65
    • 0000270866 scopus 로고
    • Coordination of the cell-specific of the four subunits of glycine decarboxylase and of serine hydroxymethyltrasnferase in leaves of C3-C4 intermediate species from different genera
    • Morgan CL, Turner SR, Rawsthorne S. 1993. Coordination of the cell-specific of the four subunits of glycine decarboxylase and of serine hydroxymethyltrasnferase in leaves of C3-C4 intermediate species from different genera. Planta 190, 468-473.
    • (1993) Planta , vol.190 , pp. 468-473
    • Morgan, C.L.1    Turner, S.R.2    Rawsthorne, S.3
  • 66
    • 34547923150 scopus 로고    scopus 로고
    • Proposed carbon dioxide concentrating mechanism in Chlamydomonas reinhardtii
    • Moroney JV, Ynalvez RA. 2007. Proposed carbon dioxide concentrating mechanism in Chlamydomonas reinhardtii. Eukaryotic Cell 6, 1251-1259.
    • (2007) Eukaryotic Cell , vol.6 , pp. 1251-1259
    • Moroney, J.V.1    Ynalvez, R.A.2
  • 67
    • 0000376429 scopus 로고
    • Inorganic-carbon transport in some marine eukaryotic microalgae
    • Munoz J, Merrett MJ. 1989. Inorganic-carbon transport in some marine eukaryotic microalgae. Planta 178, 450-455.
    • (1989) Planta , vol.178 , pp. 450-455
    • Munoz, J.1    Merrett, M.J.2
  • 69
    • 22344436899 scopus 로고    scopus 로고
    • Functional leaf anatomy of plants with crassulacean acid metabolism
    • Nelson EA, Sage TL, Sage RF. 2005. Functional leaf anatomy of plants with crassulacean acid metabolism. Functional Plant Biology 32, 409-419.
    • (2005) Functional Plant Biology , vol.32 , pp. 409-419
    • Nelson, E.A.1    Sage, T.L.2    Sage, R.F.3
  • 70
    • 44649140589 scopus 로고    scopus 로고
    • Functional constraints of CAM leaf anatomy: Tight cell packing is associated with increased CAM function across a gradient of CAM expression
    • Nelson EA, Sage RF. 2008. Functional constraints of CAM leaf anatomy: tight cell packing is associated with increased CAM function across a gradient of CAM expression. Journal of Experimental Botany 59, 1841-1850.
    • (2008) Journal of Experimental Botany , vol.59 , pp. 1841-1850
    • Nelson, E.A.1    Sage, R.F.2
  • 71
    • 0029139227 scopus 로고
    • Photosynthetic carbon assimilation by Crassula helmsii
    • Newman JR, Raven JA. 1995. Photosynthetic carbon assimilation by Crassula helmsii. Oecologia 101, 494-499.
    • (1995) Oecologia , vol.101 , pp. 494-499
    • Newman, J.R.1    Raven, J.A.2
  • 72
    • 66249148998 scopus 로고    scopus 로고
    • Leaf mesophyll conductance in 35 Australian sclerophylls covering a broad range of foliage structure and physiological variation
    • Niinemets U, Wright IJ, Evans JR. 2009. Leaf mesophyll conductance in 35 Australian sclerophylls covering a broad range of foliage structure and physiological variation. Journal of Experimental Botany 60, 2433-2449.
    • (2009) Journal of Experimental Botany , vol.60 , pp. 2433-2449
    • Niinemets, U.1    Wright, I.J.2    Evans, J.R.3
  • 74
    • 0001632307 scopus 로고
    • Inhibition by proton buffers of photosynthetic utilization of bicarbonate in Chara corallina
    • Price GD, Badger MR. 1985. Inhibition by proton buffers of photosynthetic utilization of bicarbonate in Chara corallina. Australian Journal of Plant Physiology 12, 257-267.
    • (1985) Australian Journal of Plant Physiology , vol.12 , pp. 257-267
    • Price, G.D.1    Badger, M.R.2
  • 75
    • 0001237549 scopus 로고
    • Involvement of plasmalemmasomes and carbonic anhydrase in photosynthetic utilization of bicarbonate in Chara corallina
    • Price GD, Badger MR, Bassett ME, Whitecross MI. 1985. Involvement of plasmalemmasomes and carbonic anhydrase in photosynthetic utilization of bicarbonate in Chara corallina. Australian Journal of Plant Physiology 12, 241-256.
    • (1985) Australian Journal of Plant Physiology , vol.12 , pp. 241-256
    • Price, G.D.1    Badger, M.R.2    Bassett, M.E.3    Whitecross, M.I.4
  • 76
    • 0036321693 scopus 로고    scopus 로고
    • Modes of active inorganic carbon uptake in the cyanobacterium Synechocystis sp. PCC 7942
    • Price GD, Maeda S-I, Omata T, Badger MR. 2002. Modes of active inorganic carbon uptake in the cyanobacterium Synechocystis sp. PCC7942. Functional Plant Biology 29, 131-149.
    • (2002) Functional Plant Biology , vol.29 , pp. 131-149
    • Price, G.D.1    Maeda, S.-I.2    Omata, T.3    Badger, M.R.4
  • 77
    • 0001427650 scopus 로고
    • Exogenous inorganic carbon sources in plant photosynthesis
    • Raven JA. 1970. Exogenous inorganic carbon sources in plant photosynthesis. Biology Reviews 45, 167-221.
    • (1970) Biology Reviews , vol.45 , pp. 167-221
    • Raven, J.A.1
  • 78
    • 84981611056 scopus 로고
    • Endogenous inorganic carbon sources in plant photosynthesis. I. Occurrence of the dark respiratory pathways in illuminated green cells
    • Raven JA. 1972a. Endogenous inorganic carbon sources in plant photosynthesis. I. Occurrence of the dark respiratory pathways in illuminated green cells. New Phytologist 71, 227-247.
    • (1972) New Phytologist , vol.71 , pp. 227-247
    • Raven, J.A.1
  • 79
    • 84981674787 scopus 로고
    • Endogenous inorganic carbon sources in plant photosynthesis. II. Comparison of total CO2 production in the light with measured CO2 evolution in the light
    • Raven JA. 1972b. Endogenous inorganic carbon sources in plant photosynthesis. II. Comparison of total CO2 production in the light with measured CO2 evolution in the light. New Phytologist 71, 995-1014.
    • (1972) New Phytologist , vol.71 , pp. 995-1014
    • Raven, J.A.1
  • 81
    • 0002984463 scopus 로고    scopus 로고
    • Inorganic acquisition by marine autotrophs
    • Raven JA. 1997a. Inorganic acquisition by marine autotrophs. Advances in Botanical Research 27, 85-209.
    • (1997) Advances in Botanical Research , vol.27 , pp. 85-209
    • Raven, J.A.1
  • 82
    • 0031043931 scopus 로고    scopus 로고
    • CO2 concentrating mechanisms: A direct role for thylakoid lumen acidification?
    • Raven JA. 1997b. CO2 concentrating mechanisms: A direct role for thylakoid lumen acidification? Plant, Cell and Environment, 147-154.
    • (1997) Plant, Cell and Environment , pp. 147-154
    • Raven, J.A.1
  • 83
    • 33745009533 scopus 로고    scopus 로고
    • Sensing inorganic carbon: CO2 and HCO3
    • Raven JA. 2006. Sensing inorganic carbon: CO2 and HCO3-. Biochemical Journal 396, e5-e7.
    • (2006) Biochemical Journal , vol.396 , pp. e5-e7
    • Raven, J.A.1
  • 86
    • 0036328865 scopus 로고    scopus 로고
    • Mechanistic interpretation of carbon isotope discrimination by marine macroalgae and seagrasses
    • Raven JA, Johnston AM, Kübler JE, et al. 2002. Mechanistic interpretation of carbon isotope discrimination by marine macroalgae and seagrasses. Functional Plant Biology 29, 355-378.
    • (2002) Functional Plant Biology , vol.29 , pp. 355-378
    • Raven, J.A.1    Johnston, A.M.2    Kübler, J.E.3
  • 89
    • 84865733413 scopus 로고    scopus 로고
    • Ecophysiology of photosynthesis in macroalgae
    • Raven JA, Hurd CJ. 2012. Ecophysiology of photosynthesis in macroalgae. Photosynthesis Research 113, 105-125.
    • (2012) Photosynthesis Research , vol.113 , pp. 105-125
    • Raven, J.A.1    Hurd, C.J.2
  • 90
    • 84908583972 scopus 로고    scopus 로고
    • CO2 concentrating mechanisms and environmental change
    • Raven JA, Beardall J. 2014. CO2 concentrating mechanisms and environmental change. Aquatic Botany 118, 24-37.
    • (2014) Aquatic Botany , vol.118 , pp. 24-37
    • Raven, J.A.1    Beardall, J.2
  • 91
    • 84904762033 scopus 로고    scopus 로고
    • Energy costs of carbon dioxide concentrating mechanisms in aquatic organisms
    • Raven JA, Beardall J, Giordano M. 2014. Energy costs of carbon dioxide concentrating mechanisms in aquatic organisms. Photosynthesis Research 121, 111-124.
    • (2014) Photosynthesis Research , vol.121 , pp. 111-124
    • Raven, J.A.1    Beardall, J.2    Giordano, M.3
  • 92
    • 0001491527 scopus 로고
    • Photorespiratory metabolism and immunogold localization of photorespiratory enzymes in C3 and C3-C4 intermediate species of Moricandia
    • Rawsthorne S, Hylton CM, Smith AM, Woolhouse HW. 1988a. Photorespiratory metabolism and immunogold localization of photorespiratory enzymes in C3 and C3-C4 intermediate species of Moricandia. Planta 173, 298-308.
    • (1988) Planta , vol.173 , pp. 298-308
    • Rawsthorne, S.1    Hylton, C.M.2    Smith, A.M.3    Woolhouse, H.W.4
  • 93
    • 0001185481 scopus 로고
    • Photorespiratory metabolism and immunogold localization of photorespiratory enzymes in C3 and C3-C4 intermediate species of Moricandia
    • Rawsthorne S, Hylton CM, Smith AM, Woolhouse HW. 1988b. Photorespiratory metabolism and immunogold localization of photorespiratory enzymes in C3 and C3-C4 intermediate species of Moricandia. Planta 176, 527-532.
    • (1988) Planta , vol.176 , pp. 527-532
    • Rawsthorne, S.1    Hylton, C.M.2    Smith, A.M.3    Woolhouse, H.W.4
  • 94
    • 0000429822 scopus 로고
    • The relationship between the postillumination CO2 burst and glycine metabolism in leaves of C3 and C3-C4 intermediate species of Moricandia
    • Rawsthorne S, Hylton CM. 1991. The relationship between the postillumination CO2 burst and glycine metabolism in leaves of C3 and C3-C4 intermediate species of Moricandia. Planta 186, 122-126.
    • (1991) Planta , vol.186 , pp. 122-126
    • Rawsthorne, S.1    Hylton, C.M.2
  • 95
    • 0002571441 scopus 로고
    • Inorganic carbon fluxes in cyanobacteria: A quantitative model
    • J Biggins, ed. Martinus Nijhof, Dordrecht, The Netherlands
    • Reinhold L, Zviman M, Kaplan A. 1987. Inorganic carbon fluxes in cyanobacteria: A quantitative model. In: J Biggins, ed. Progress in Photosynthesis. Martinus Nijhof, Dordrecht, The Netherlands, pp. 289-296.
    • (1987) Progress in Photosynthesis , pp. 289-296
    • Reinhold, L.1    Zviman, M.2    Kaplan, A.3
  • 96
    • 0026287021 scopus 로고
    • A model for inorganic carbon fluxes and cyanobacterial carboxysomes
    • Reinhold L, Kosloff R, Kaplan A. 1991. A model for inorganic carbon fluxes and cyanobacterial carboxysomes. Canadian Journal of Botany 69, 984-988.
    • (1991) Canadian Journal of Botany , vol.69 , pp. 984-988
    • Reinhold, L.1    Kosloff, R.2    Kaplan, A.3
  • 97
    • 0030451658 scopus 로고    scopus 로고
    • Driving forces for bicarbonate transport in the cyanobacterium Synechococcus R-2 (PCC 7942)
    • Ritchie RJ, Nadolny C, Larkum AWD. 1996. Driving forces for bicarbonate transport in the cyanobacterium Synechococcus R-2 (PCC 7942). Plant Physiology 112, 1573-1584.
    • (1996) Plant Physiology , vol.112 , pp. 1573-1584
    • Ritchie, R.J.1    Nadolny, C.2    Larkum, A.W.D.3
  • 98
    • 32944479191 scopus 로고    scopus 로고
    • Carbon acquisition of marine phytoplankton. Effect of photoperiod length
    • Rost B, Riebesell U, Sültemeyer D. 2006a. Carbon acquisition of marine phytoplankton. Effect of photoperiod length. Limnology and Oceanography 51, 12-20.
    • (2006) Limnology and Oceanography , vol.51 , pp. 12-20
    • Rost, B.1    Riebesell, U.2    Sültemeyer, D.3
  • 100
    • 42049120199 scopus 로고    scopus 로고
    • Isotope disequilibrium and mass spectrometric studies of inorganic carbon acquisition by phytoplankton
    • Rost B, Kranz SA, Richter K-U, Tortell PD. 2007. Isotope disequilibrium and mass spectrometric studies of inorganic carbon acquisition by phytoplankton. Limnology and Oceanography: Methods 5, 328-337.
    • (2007) Limnology and Oceanography: Methods , vol.5 , pp. 328-337
    • Rost, B.1    Kranz, S.A.2    Richter, K.-U.3    Tortell, P.D.4
  • 101
    • 0012482230 scopus 로고
    • Uptake of inorganic carbon by isolated chloroplasts of Chlorella ellipsoidea
    • Rotatore C, Colman B. 1990. Uptake of inorganic carbon by isolated chloroplasts of Chlorella ellipsoidea. Plant Physiology 93, 1597-1600.
    • (1990) Plant Physiology , vol.93 , pp. 1597-1600
    • Rotatore, C.1    Colman, B.2
  • 102
    • 0001168759 scopus 로고
    • The localization of active inorganic carbon transport at the plasma membrane in Chlorella ellipsoidea
    • Rotatore C, Colman B. 1991a. The localization of active inorganic carbon transport at the plasma membrane in Chlorella ellipsoidea. Canadian Journal of Botany 69, 1025-1031.
    • (1991) Canadian Journal of Botany , vol.69 , pp. 1025-1031
    • Rotatore, C.1    Colman, B.2
  • 103
    • 84989078698 scopus 로고
    • The active uptake of carbon dioxide by the unicellular green algae transport Chlorella saccharophila and C. Ellipsoidea
    • Rotatore C, Colman B. 1991b. The active uptake of carbon dioxide by the unicellular green algae transport Chlorella saccharophila and C. Ellipsoidea. Plant Cell and Environment 14, 371-375.
    • (1991) Plant Cell and Environment , vol.14 , pp. 371-375
    • Rotatore, C.1    Colman, B.2
  • 104
    • 84989061235 scopus 로고
    • The acquisition and accumulation of inorganic carbon by the unicellular green algae transport Chlorella ellipsoidea
    • Rotatore C, Colman B. 1991c. The acquisition and accumulation of inorganic carbon by the unicellular green algae transport Chlorella ellipsoidea. Plant Cell and Environment 14, 377-382.
    • (1991) Plant Cell and Environment , vol.14 , pp. 377-382
    • Rotatore, C.1    Colman, B.2
  • 105
    • 0000699368 scopus 로고
    • Active uptake of CO2 during photosynthesis in the green alga Eremosphaera viridis is mediated by a CO2-ATPase
    • Rotatore C, Lew RR, Colman B. 1992. Active uptake of CO2 during photosynthesis in the green alga Eremosphaera viridis is mediated by a CO2-ATPase. Planta 188, 539-545.
    • (1992) Planta , vol.188 , pp. 539-545
    • Rotatore, C.1    Lew, R.R.2    Colman, B.3
  • 106
    • 0030029104 scopus 로고    scopus 로고
    • Influx and efflux of inorganic carbon in Synechococcus UTEX 625
    • Salon C, Mir NA, Canvin DT. 1996a. Influx and efflux of inorganic carbon in Synechococcus UTEX 625. Plant Cell and Environment 19, 247-259.
    • (1996) Plant Cell and Environment , vol.19 , pp. 247-259
    • Salon, C.1    Mir, N.A.2    Canvin, D.T.3
  • 107
  • 108
    • 0030937286 scopus 로고    scopus 로고
    • HCO3-efflux and the regulation of intracellular Ci pool size in Synechococcus UTEX 625
    • Salon C, Canvin DT. 1997. HCO3-efflux and the regulation of intracellular Ci pool size in Synechococcus UTEX 625. Canadian Journal of Botany 75, 290-300.
    • (1997) Canadian Journal of Botany , vol.75 , pp. 290-300
    • Salon, C.1    Canvin, D.T.2
  • 109
    • 0000456223 scopus 로고
    • Carbon isotope fractionation of algae influenced by an inducible CO2-concentrating mechanism
    • Lucas WJ, Berry JA, eds. Rockville: American Society of Plant Physiologists
    • Sharkey TD, Berry JA. 1985. Carbon isotope fractionation of algae influenced by an inducible CO2-concentrating mechanism. In: Lucas WJ, Berry JA, eds. Inorganic carbon uptake by aquatic photosynthetic organisms. Rockville: American Society of Plant Physiologists, 389-401.
    • (1985) Inorganic Carbon Uptake by Aquatic Photosynthetic Organisms , pp. 389-401
    • Sharkey, T.D.1    Berry, J.A.2
  • 110
    • 0002465269 scopus 로고    scopus 로고
    • Interactions between carbon dioxide and oxygen in the photosynthesis of three species of marine red algae
    • Sherlock DJ, Raven JA. 2001. Interactions between carbon dioxide and oxygen in the photosynthesis of three species of marine red algae. Botanical Journal of Scotland 53, 33-43.
    • (2001) Botanical Journal of Scotland , vol.53 , pp. 33-43
    • Sherlock, D.J.1    Raven, J.A.2
  • 111
    • 0037998618 scopus 로고    scopus 로고
    • Global distribution of C3 and C4 vegetation: Carbon cycle Implications
    • 6-1-6-13
    • Still CJ, Berry JA. 2003. Global distribution of C3 and C4 vegetation: carbon cycle Implications. Global Biogeochemical Cycles 17, 1006, pp. 6-1-6-13. doi: 10.1029/2001GB001807
    • (2003) Global Biogeochemical Cycles , vol.17 , pp. 1006
    • Still, C.J.1    Berry, J.A.2
  • 112
    • 0030452158 scopus 로고    scopus 로고
    • The CO2 permeability of the plasma membrane of Chlamydomonas reinhartii: Mass spectrometric 18O-exchange measurements from 13C18O2 in suspensions of carbonic anhydrase-loaded plasma-membrane vesicles
    • Sültemeyer D, Rinast K-A. 1996. The CO2 permeability of the plasma membrane of Chlamydomonas reinhartii: mass spectrometric 18O-exchange measurements from 13C18O2 in suspensions of carbonic anhydrase-loaded plasma-membrane vesicles. Planta 200, 358-368.
    • (1996) Planta , vol.200 , pp. 358-368
    • Sültemeyer, D.1    Rinast, K.-A.2
  • 113
    • 65249101845 scopus 로고    scopus 로고
    • Light and CO2 do not affect the mesophyll conductance to CO2 diffusion in wheat leaves
    • Tazoe Y, von Caemmerer S, Badger MR, Evans JR. 2009. Light and CO2 do not affect the mesophyll conductance to CO2 diffusion in wheat leaves. Journal of Experimental Botany 60, 2291-2301.
    • (2009) Journal of Experimental Botany , vol.60 , pp. 2291-2301
    • Tazoe, Y.1    Von Caemmerer, S.2    Badger, M.R.3    Evans, J.R.4
  • 114
    • 79952533598 scopus 로고    scopus 로고
    • Using tunable diode laser spectroscopy to measure carbon isotope discrimination and mesophyll conductance to CO2 diffusion dynamically at different CO2 concentrations
    • Tazoe Y, von Cammerer S, Estavillo GM, Evans JR. 2011. Using tunable diode laser spectroscopy to measure carbon isotope discrimination and mesophyll conductance to CO2 diffusion dynamically at different CO2 concentrations. Plant Cell and Environment 34, 580-591.
    • (2011) Plant Cell and Environment , vol.34 , pp. 580-591
    • Tazoe, Y.1    Von Cammerer, S.2    Estavillo, G.M.3    Evans, J.R.4
  • 115
    • 84875492043 scopus 로고    scopus 로고
    • Is the recovery of (photo)respiratory CO2 and intermediates minimal?
    • Tcherkez G. 2013. Is the recovery of (photo)respiratory CO2 and intermediates minimal? New Phytologist 198, 334-338.
    • (2013) New Phytologist , vol.198 , pp. 334-338
    • Tcherkez, G.1
  • 118
    • 0142102563 scopus 로고    scopus 로고
    • Massive light-dependent cycling of inorganic carbon between oxygenic between oxygenic photosynthetic microorganism and their surroundings
    • Tchernov D, Silverman J, Luz B, Reinhold L, Kaplan A. 2003. Massive light-dependent cycling of inorganic carbon between oxygenic between oxygenic photosynthetic microorganism and their surroundings. Photosynthesis Research 77, 95-103.
    • (2003) Photosynthesis Research , vol.77 , pp. 95-103
    • Tchernov, D.1    Silverman, J.2    Luz, B.3    Reinhold, L.4    Kaplan, A.5
  • 121
    • 77649297640 scopus 로고    scopus 로고
    • Effect of overexpression of radish plasma membrane aquaporins on water-use efficiency, photosynthesis and growth of Eucalyptus trees
    • Tsuchihira A, Hanba YT, Kato N, Doi T, Kawazu T, Maeshima M. 2010. Effect of overexpression of radish plasma membrane aquaporins on water-use efficiency, photosynthesis and growth of Eucalyptus trees. Tree Physiology 30, 417-430
    • (2010) Tree Physiology , vol.30 , pp. 417-430
    • Tsuchihira, A.1    Hanba, Y.T.2    Kato, N.3    Doi, T.4    Kawazu, T.5    Maeshima, M.6
  • 122
    • 0142246438 scopus 로고    scopus 로고
    • The tobacco aquaporin NtAQP1 is a membrane CO2 pore with physiological functions
    • Uehlein N, Lovisolo C, Siefritz F, Kaldenhoff R. 2003. The tobacco aquaporin NtAQP1 is a membrane CO2 pore with physiological functions. Nature 425, 734-737.
    • (2003) Nature , vol.425 , pp. 734-737
    • Uehlein, N.1    Lovisolo, C.2    Siefritz, F.3    Kaldenhoff, R.4
  • 123
    • 48249125885 scopus 로고    scopus 로고
    • Function of Nicotiana tabacum aquaporins as chloroplast gas pores challenges the concept of membrane CO2 permeability
    • Uehlein N, Otto B, Hanson DT, Fischer M, McDowell N, Kaldenhoff R. 2008. Function of Nicotiana tabacum aquaporins as chloroplast gas pores challenges the concept of membrane CO2 permeability. The Plant Cell 20, 648-657.
    • (2008) The Plant Cell , vol.20 , pp. 648-657
    • Uehlein, N.1    Otto, B.2    Hanson, D.T.3    Fischer, M.4    McDowell, N.5    Kaldenhoff, R.6
  • 124
    • 0036954686 scopus 로고    scopus 로고
    • Uptake of CO2 and bicarbonate by intact cells and chloroplasts of Tetraedron minimum and Chlamydomonas noctigama
    • Van Hunnik E, Amoroso G, Sültemeyer D. 2002. Uptake of CO2 and bicarbonate by intact cells and chloroplasts of Tetraedron minimum and Chlamydomonas noctigama. Planta 215, 763-769.
    • (2002) Planta , vol.215 , pp. 763-769
    • Van Hunnik, E.1    Amoroso, G.2    Sültemeyer, D.3
  • 125
    • 0009825768 scopus 로고
    • A model of photosynthesising CO2 assimilation and carbon-isotope discrimination in leaves of certain C3-C4 intermediates
    • Von Caemmerer S. 1989. A model of photosynthesising CO2 assimilation and carbon-isotope discrimination in leaves of certain C3-C4 intermediates. Planta 178, 463-474.
    • (1989) Planta , vol.178 , pp. 463-474
    • Von Caemmerer, S.1
  • 127
    • 84969419107 scopus 로고
    • Bicarbonate assimilation by freshwater charophytes and higher plants. I. Membrane transport of bicarbonate is not proven
    • Walker NA, Smith FA, Cathers IR. 1980. Bicarbonate assimilation by freshwater charophytes and higher plants. I. Membrane transport of bicarbonate is not proven. Journal of Membrane Biology 12, 241-256.
    • (1980) Journal of Membrane Biology , vol.12 , pp. 241-256
    • Walker, N.A.1    Smith, F.A.2    Cathers, I.R.3
  • 128
    • 84914115719 scopus 로고    scopus 로고
    • Acclimation to very low CO2: Contribution of limiting CO2 inducible proteins, LCIb and LCIA, to inorganic carbon uptake in Chlamydomonas reinhardtii
    • Wang Y, Spalding MJ. 2014. Acclimation to very low CO2: contribution of limiting CO2 inducible proteins, LCIb and LCIA, to inorganic carbon uptake in Chlamydomonas reinhardtii. Plant Physiology 166, 2040-2050.
    • (2014) Plant Physiology , vol.166 , pp. 2040-2050
    • Wang, Y.1    Spalding, M.J.2
  • 129
    • 44649128700 scopus 로고    scopus 로고
    • Stand aside stomata, another actor deserves centre stage: The forgotten role of the internal conductance to CO2 transfer
    • Warren CR. 2008. Stand aside stomata, another actor deserves centre stage: The forgotten role of the internal conductance to CO2 transfer. Journal of Experimental Botany 59, 1475-1487.
    • (2008) Journal of Experimental Botany , vol.59 , pp. 1475-1487
    • Warren, C.R.1
  • 131
    • 84940467423 scopus 로고    scopus 로고
    • Crassulacean acid metabolism: A continuous or discrete trait?
    • Winter K, Holtum JAM, Smith JAC. 2015. Crassulacean acid metabolism: A continuous or discrete trait? New Phytologist 208, 73-78.
    • (2015) New Phytologist , vol.208 , pp. 73-78
    • Winter, K.1    Holtum, J.A.M.2    Smith, J.A.C.3
  • 132
    • 84931281833 scopus 로고    scopus 로고
    • Characterization of cooperative bicarbonate uptake into chloroplast stroma in the green alga Chlamydomonas reinhardtii
    • Yamano T, Sato E, Iguchi H, Fukuda Y, Fukuzawa H. 2015. Characterization of cooperative bicarbonate uptake into chloroplast stroma in the green alga Chlamydomonas reinhardtii. Proceedings of the National Academy of Science USA 112, 7315-7320.
    • (2015) Proceedings of the National Academy of Science USA , vol.112 , pp. 7315-7320
    • Yamano, T.1    Sato, E.2    Iguchi, H.3    Fukuda, Y.4    Fukuzawa, H.5
  • 133
    • 80555122963 scopus 로고    scopus 로고
    • Mapping photoautotrophic metabolism with isotopically nonstationary 13C flux analysis
    • Young JD, Shastri A, Stephanopoulos G, Morgan JA. 2011. Mapping photoautotrophic metabolism with isotopically nonstationary 13C flux analysis. Metabolic Engineering 13, 656-665.
    • (2011) Metabolic Engineering , vol.13 , pp. 656-665
    • Young, J.D.1    Shastri, A.2    Stephanopoulos, G.3    Morgan, J.A.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.