메뉴 건너뛰기




Volumn 20, Issue 6, 2010, Pages 2178-2203

On the ergodicity of the adaptive Metropolis algorithm on unbounded domains

Author keywords

Adaptive Markov chain Monte Carlo; Convergence; Ergodicity; Metropolis algorithm; Stochastic approximation

Indexed keywords


EID: 78650484041     PISSN: 10505164     EISSN: 10505164     Source Type: Journal    
DOI: 10.1214/10-AAP682     Document Type: Article
Times cited : (50)

References (16)
  • 1
    • 33750512542 scopus 로고    scopus 로고
    • On the ergodicity properties of some adaptive MCMC algorithms
    • DOI 10.1214/105051606000000286
    • ANDRIEU, C. and MOULINES, É. (2006). On the ergodicity properties of some adaptive MCMC algorithms. Ann. Appl. Probab. 16 1462-1505. MR2260070 (Pubitemid 44662199)
    • (2006) Annals of Applied Probability , vol.16 , Issue.3 , pp. 1462-1505
    • Andrieu, C.1    Moulines, E.2
  • 2
    • 33244461073 scopus 로고    scopus 로고
    • Stability of stochastic approximation under verifiable conditions
    • (electronic). MR2177157
    • ANDRIEU, C.,MOULINES, É. and PRIOURET, P. (2005). Stability of stochastic approximation under verifiable conditions. SIAM J. Control Optim. 44 283-312 (electronic). MR2177157
    • (2005) SIAM J. Control Optim. , vol.44 , pp. 283-312
    • Andrieu, C.1    Moulines, É.2    Priouret, P.3
  • 4
    • 57849088168 scopus 로고    scopus 로고
    • A tutorial on adaptive MCMC
    • ANDRIEU, C. and THOMS, J. (2008). A tutorial on adaptive MCMC. Statist. Comput. 18 343-373.
    • (2008) Statist. Comput. , vol.18 , pp. 343-373
    • Andrieu, C.1    Thoms, J.2
  • 5
    • 33747062507 scopus 로고    scopus 로고
    • On adaptive Markov chain Monte Carlo algorithms
    • MR2172842
    • ATCHADÉ, Y. F. and ROSENTHAL, J. S. (2005). On adaptive Markov chain Monte Carlo algorithms. Bernoulli 11 815-828. MR2172842
    • (2005) Bernoulli , vol.11 , pp. 815-828
    • Atchadé, Y.F.1    Rosenthal, J.S.2
  • 6
    • 14544277112 scopus 로고    scopus 로고
    • Renewal theory and computable convergence rates for geometrically ergodic Markov chains
    • MR2114987
    • BAXENDALE, P. H. (2005). Renewal theory and computable convergence rates for geometrically ergodic Markov chains. Ann. Appl. Probab. 15 700-738. MR2114987
    • (2005) Ann. Appl. Probab. , vol.15 , pp. 700-738
    • Baxendale, P.H.1
  • 7
    • 0001605792 scopus 로고
    • Some multivariate Chebyshev inequalities with extensions to continuous parameter processes
    • MR0148106
    • BIRNBAUM, Z. W. and MARSHALL, A. W. (1961). Some multivariate Chebyshev inequalities with extensions to continuous parameter processes. Ann. Math. Statist. 32 687-703. MR0148106
    • (1961) Ann. Math. Statist. , vol.32 , pp. 687-703
    • Birnbaum, Z.W.1    Marshall, A.W.2
  • 9
    • 0038563932 scopus 로고    scopus 로고
    • An adaptive metropolis algorithm
    • MR1828504
    • HAARIO, H., SAKSMAN, E. and TAMMINEN, J. (2001). An adaptive metropolis algorithm. Bernoulli 7 223-242. MR1828504
    • (2001) Bernoulli , vol.7 , pp. 223-242
    • Haario, H.1    Saksman, E.2    Tamminen, J.3
  • 10
    • 0001562199 scopus 로고    scopus 로고
    • Geometric ergodicity of Metropolis algorithms
    • MR1731030
    • JARNER, S. F. and HANSEN, E. (2000). Geometric ergodicity of Metropolis algorithms. Stochastic Process. Appl. 85 341-361. MR1731030
    • (2000) Stochastic Process. Appl. , vol.85 , pp. 341-361
    • Jarner, S.F.1    Hansen, E.2
  • 12
    • 0000566364 scopus 로고
    • Computable bounds for geometric convergence rates of Markov chains
    • MR1304770
    • MEYN, S. P. and TWEEDIE, R. L. (1994). Computable bounds for geometric convergence rates of Markov chains. Ann. Appl. Probab. 4 981-1011. MR1304770
    • (1994) Ann. Appl. Probab. , vol.4 , pp. 981-1011
    • Meyn, S.P.1    Tweedie, R.L.2
  • 13
    • 34548026526 scopus 로고    scopus 로고
    • Coupling and ergodicity of adaptive Markov chain Monte Carlo algorithms
    • MR2340211
    • ROBERTS, G. O. and ROSENTHAL, J. S. (2007). Coupling and ergodicity of adaptive Markov chain Monte Carlo algorithms. J. Appl. Probab. 44 458-475. MR2340211
    • (2007) J. Appl. Probab. , vol.44 , pp. 458-475
    • Roberts, G.O.1    Rosenthal, J.S.2
  • 15
    • 33746388444 scopus 로고    scopus 로고
    • Geometric convergence and central limit theorems for multidimensional Hastings and Metropolis algorithms
    • MR1399158
    • ROBERTS, G. O. and TWEEDIE, R. L. (1996). Geometric convergence and central limit theorems for multidimensional Hastings and Metropolis algorithms. Biometrika 83 95-110. MR1399158
    • (1996) Biometrika , vol.83 , pp. 95-110
    • Roberts, G.O.1    Tweedie, R.L.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.