-
1
-
-
33750512542
-
On the ergodicity properties of some adaptive MCMC algorithms
-
DOI 10.1214/105051606000000286
-
ANDRIEU, C. and MOULINES, É. (2006). On the ergodicity properties of some adaptive MCMC algorithms. Ann. Appl. Probab. 16 1462-1505. MR2260070 (Pubitemid 44662199)
-
(2006)
Annals of Applied Probability
, vol.16
, Issue.3
, pp. 1462-1505
-
-
Andrieu, C.1
Moulines, E.2
-
2
-
-
33244461073
-
Stability of stochastic approximation under verifiable conditions
-
(electronic). MR2177157
-
ANDRIEU, C.,MOULINES, É. and PRIOURET, P. (2005). Stability of stochastic approximation under verifiable conditions. SIAM J. Control Optim. 44 283-312 (electronic). MR2177157
-
(2005)
SIAM J. Control Optim.
, vol.44
, pp. 283-312
-
-
Andrieu, C.1
Moulines, É.2
Priouret, P.3
-
4
-
-
57849088168
-
A tutorial on adaptive MCMC
-
ANDRIEU, C. and THOMS, J. (2008). A tutorial on adaptive MCMC. Statist. Comput. 18 343-373.
-
(2008)
Statist. Comput.
, vol.18
, pp. 343-373
-
-
Andrieu, C.1
Thoms, J.2
-
5
-
-
33747062507
-
On adaptive Markov chain Monte Carlo algorithms
-
MR2172842
-
ATCHADÉ, Y. F. and ROSENTHAL, J. S. (2005). On adaptive Markov chain Monte Carlo algorithms. Bernoulli 11 815-828. MR2172842
-
(2005)
Bernoulli
, vol.11
, pp. 815-828
-
-
Atchadé, Y.F.1
Rosenthal, J.S.2
-
6
-
-
14544277112
-
Renewal theory and computable convergence rates for geometrically ergodic Markov chains
-
MR2114987
-
BAXENDALE, P. H. (2005). Renewal theory and computable convergence rates for geometrically ergodic Markov chains. Ann. Appl. Probab. 15 700-738. MR2114987
-
(2005)
Ann. Appl. Probab.
, vol.15
, pp. 700-738
-
-
Baxendale, P.H.1
-
7
-
-
0001605792
-
Some multivariate Chebyshev inequalities with extensions to continuous parameter processes
-
MR0148106
-
BIRNBAUM, Z. W. and MARSHALL, A. W. (1961). Some multivariate Chebyshev inequalities with extensions to continuous parameter processes. Ann. Math. Statist. 32 687-703. MR0148106
-
(1961)
Ann. Math. Statist.
, vol.32
, pp. 687-703
-
-
Birnbaum, Z.W.1
Marshall, A.W.2
-
8
-
-
3543035224
-
Markov chain Monte Carlo methods for high dimensional inversion in remote sensing
-
MR2088292
-
HAARIO, H., LAINE, M., LEHTINEN, M., SAKSMAN, E. and TAMMINEN, J. (2004). Markov chain Monte Carlo methods for high dimensional inversion in remote sensing. J. R. Stat. Soc. Ser. B Stat. Methodol. 66 591-607. MR2088292
-
(2004)
J. R. Stat. Soc. Ser. B Stat. Methodol.
, vol.66
, pp. 591-607
-
-
Haario, H.1
Laine, M.2
Lehtinen, M.3
Saksman, E.4
Tamminen, J.5
-
9
-
-
0038563932
-
An adaptive metropolis algorithm
-
MR1828504
-
HAARIO, H., SAKSMAN, E. and TAMMINEN, J. (2001). An adaptive metropolis algorithm. Bernoulli 7 223-242. MR1828504
-
(2001)
Bernoulli
, vol.7
, pp. 223-242
-
-
Haario, H.1
Saksman, E.2
Tamminen, J.3
-
10
-
-
0001562199
-
Geometric ergodicity of Metropolis algorithms
-
MR1731030
-
JARNER, S. F. and HANSEN, E. (2000). Geometric ergodicity of Metropolis algorithms. Stochastic Process. Appl. 85 341-361. MR1731030
-
(2000)
Stochastic Process. Appl.
, vol.85
, pp. 341-361
-
-
Jarner, S.F.1
Hansen, E.2
-
11
-
-
5744249209
-
Equations of state calculations by fast computing machines
-
METROPOLIS, N., ROSENBLUTH, A. W., ROSENBLUTH, M. N., TELLER, A. H. and TELLER, E. (1953). Equations of state calculations by fast computing machines. Journal of Chemical Physics 21 1087-1092.
-
(1953)
Journal of Chemical Physics
, vol.21
, pp. 1087-1092
-
-
Metropolis, N.1
Rosenbluth, A.W.2
Rosenbluth, M.N.3
Teller, A.H.4
Teller, E.5
-
12
-
-
0000566364
-
Computable bounds for geometric convergence rates of Markov chains
-
MR1304770
-
MEYN, S. P. and TWEEDIE, R. L. (1994). Computable bounds for geometric convergence rates of Markov chains. Ann. Appl. Probab. 4 981-1011. MR1304770
-
(1994)
Ann. Appl. Probab.
, vol.4
, pp. 981-1011
-
-
Meyn, S.P.1
Tweedie, R.L.2
-
13
-
-
34548026526
-
Coupling and ergodicity of adaptive Markov chain Monte Carlo algorithms
-
MR2340211
-
ROBERTS, G. O. and ROSENTHAL, J. S. (2007). Coupling and ergodicity of adaptive Markov chain Monte Carlo algorithms. J. Appl. Probab. 44 458-475. MR2340211
-
(2007)
J. Appl. Probab.
, vol.44
, pp. 458-475
-
-
Roberts, G.O.1
Rosenthal, J.S.2
-
15
-
-
33746388444
-
Geometric convergence and central limit theorems for multidimensional Hastings and Metropolis algorithms
-
MR1399158
-
ROBERTS, G. O. and TWEEDIE, R. L. (1996). Geometric convergence and central limit theorems for multidimensional Hastings and Metropolis algorithms. Biometrika 83 95-110. MR1399158
-
(1996)
Biometrika
, vol.83
, pp. 95-110
-
-
Roberts, G.O.1
Tweedie, R.L.2
|