메뉴 건너뛰기




Volumn 93, Issue , 2015, Pages 1296-1302

Wind-speed prediction and analysis based on geological and distance variables using an artificial neural network: A case study in South Korea

Author keywords

Artificial neural networks; Climate data; Wind energy; Wind prediction

Indexed keywords

FORECASTING; GEOLOGY; NEURAL NETWORKS; SPEED; WIND POWER;

EID: 84954520579     PISSN: 03605442     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.energy.2015.10.026     Document Type: Article
Times cited : (34)

References (38)
  • 1
    • 84873151282 scopus 로고    scopus 로고
    • Renewable energy certificate and perform, achieve, trade mechanisms to enhance the energy security for India
    • Kumar R, Agarwala A. Renewable energy certificate and perform, achieve, trade mechanisms to enhance the energy security for India. Energy Policy 2013;55:669-76.
    • (2013) Energy Policy , vol.55 , pp. 669-676
    • Kumar, R.1    Agarwala, A.2
  • 2
    • 84856301096 scopus 로고    scopus 로고
    • The Kyoto mechanisms and the diffusion of renewable energy technologies in the BRICS
    • Bodas Freitas IM, Dantas E, Iizuka M. The Kyoto mechanisms and the diffusion of renewable energy technologies in the BRICS. Energy Policy 2012;42: 118-28.
    • (2012) Energy Policy , vol.42 , pp. 118-128
    • Bodas Freitas, I.M.1    Dantas, E.2    Iizuka, M.3
  • 3
    • 13644279707 scopus 로고    scopus 로고
    • The implications of the Kyoto project mechanisms for the deployment of renewable electricity in Europe
    • Río P, Hernández F, Gual M. The implications of the Kyoto project mechanisms for the deployment of renewable electricity in Europe. Energy Policy 2005;33: 2010-22.
    • (2005) Energy Policy , vol.33 , pp. 2010-2022
    • Río, P.1    Hernández, F.2    Gual, M.3
  • 4
    • 33750174541 scopus 로고    scopus 로고
    • Decision support system for exploiting local renewable energy sources: a case study of the Chigu area of southwestern Taiwan
    • Yue C-D, Yang GG-L. Decision support system for exploiting local renewable energy sources: a case study of the Chigu area of southwestern Taiwan. Energy Policy 2007;35:383-94.
    • (2007) Energy Policy , vol.35 , pp. 383-394
    • Yue, C.-D.1    Yang, G.G.-L.2
  • 5
    • 84926345629 scopus 로고    scopus 로고
    • Korea energy management corporation (KEMCO)
    • New & Renewable Energy Statistics 2012. Korea energy management corporation (KEMCO). 2013.
    • (2013) New & Renewable Energy Statistics 2012
  • 6
    • 84954559417 scopus 로고    scopus 로고
    • Korea power exchange (KPX)
    • Power Plant Status 2013. Korea power exchange (KPX). 2014.
    • (2014) Power Plant Status 2013
  • 7
    • 84923253245 scopus 로고    scopus 로고
    • [accessed Dec 2014]
    • Global installed wind power capacity (MW)-regional distribution. Global Wind Energy Council (GWEC); 2013. Available from: http://www.gwec.net/wp-content/uploads/2014/04/5_17-1_global-installed-wind-power-capacity_regional-distribution.jpg [accessed Dec 2014].
    • (2013) Global Wind Energy Council (GWEC)
  • 8
    • 84954471039 scopus 로고    scopus 로고
    • [accessed Dec 2014]
    • Available from: http://www.gwec.net/wp-content/uploads/2014/04/8_Top-ten-annual-2013.jpg [accessed Dec 2014].
  • 9
    • 84954476723 scopus 로고    scopus 로고
    • [accessed Dec 2014]
    • Available from: http://www.gwec.net/wp-content/uploads/2014/04/GWEC-Global-Wind-Report_9-April-2014.pdf [accessed Dec 2014].
  • 10
    • 80055016116 scopus 로고    scopus 로고
    • A feasibility study on HTS SMES application for power quality enhancement through both software simulations and hardware-based experiments
    • Kim AR. A feasibility study on HTS SMES application for power quality enhancement through both software simulations and hardware-based experiments. Phys C 2011;471:1404-8.
    • (2011) Phys C , vol.471 , pp. 1404-1408
    • Kim, A.R.1
  • 11
    • 84884589096 scopus 로고    scopus 로고
    • Relative importance of parameters affecting wind speed prediction using artificial neural networks
    • Ghorbani MA, Khatibi R, Hosseini B, Bilgili M. Relative importance of parameters affecting wind speed prediction using artificial neural networks. Theor Appl Climatol 2013;114:107-14.
    • (2013) Theor Appl Climatol , vol.114 , pp. 107-114
    • Ghorbani, M.A.1    Khatibi, R.2    Hosseini, B.3    Bilgili, M.4
  • 12
    • 78149358777 scopus 로고    scopus 로고
    • Comprehensive evaluation of ARMA-GARCH(-M) approaches for modeling the mean and volatility of wind speed
    • Liu H, Erdem E, Shi J. Comprehensive evaluation of ARMA-GARCH(-M) approaches for modeling the mean and volatility of wind speed. Appl Energy 2011;88:724-32.
    • (2011) Appl Energy , vol.88 , pp. 724-732
    • Liu, H.1    Erdem, E.2    Shi, J.3
  • 13
    • 78650562310 scopus 로고    scopus 로고
    • ARMA based approaches for forecasting the tuple of wind speed and direction
    • Erdem E, Shi J. ARMA based approaches for forecasting the tuple of wind speed and direction. Appl Energy 2011;88:1405-14.
    • (2011) Appl Energy , vol.88 , pp. 1405-1414
    • Erdem, E.1    Shi, J.2
  • 14
    • 71849095349 scopus 로고    scopus 로고
    • Estimation of wind velocity over a complex terrain using the generalized mapping regressor
    • Beccali M, Cirrincione G, Marvuglia A, Serporta C. Estimation of wind velocity over a complex terrain using the generalized mapping regressor. Appl Energy 2010;87:884-93.
    • (2010) Appl Energy , vol.87 , pp. 884-893
    • Beccali, M.1    Cirrincione, G.2    Marvuglia, A.3    Serporta, C.4
  • 15
    • 79959826777 scopus 로고    scopus 로고
    • Estimation of wind speed profile using adaptive neuro-fuzzy inference system (ANFIS)
    • Mohandes M, Rehman S, Rahman SM. Estimation of wind speed profile using adaptive neuro-fuzzy inference system (ANFIS). Appl Energy 2011;88: 4024-32.
    • (2011) Appl Energy , vol.88 , pp. 4024-4032
    • Mohandes, M.1    Rehman, S.2    Rahman, S.M.3
  • 16
    • 84864827118 scopus 로고    scopus 로고
    • Wind speed and wind energy forecast through Kalman filtering of numerical weather prediction model output
    • Cassola F, Burlando M. Wind speed and wind energy forecast through Kalman filtering of numerical weather prediction model output. Appl Energy 2012;99: 154-66.
    • (2012) Appl Energy , vol.99 , pp. 154-166
    • Cassola, F.1    Burlando, M.2
  • 17
    • 71849115521 scopus 로고    scopus 로고
    • Uncertainty analysis of wind energy potential assessment
    • Kwon S-D. Uncertainty analysis of wind energy potential assessment. Appl Energy 2010;87:856-65.
    • (2010) Appl Energy , vol.87 , pp. 856-865
    • Kwon, S.-D.1
  • 18
    • 84862213628 scopus 로고    scopus 로고
    • Comparison of two new ARIMA-ANN and ARIMAKalman hybrid methods for wind speed prediction
    • Liu H, Tian H-q, Li Y-f. Comparison of two new ARIMA-ANN and ARIMAKalman hybrid methods for wind speed prediction. Appl Energy 2012;98: 415-24.
    • (2012) Appl Energy , vol.98 , pp. 415-424
    • Liu, H.1    Tian, H.-Q.2    Li, Y.-F.3
  • 19
    • 84884747446 scopus 로고    scopus 로고
    • Data efficient measure-correlate-predict approaches to wind resource assessment for small-scale wind energy
    • Weekes SM, Tomlin AS. Data efficient measure-correlate-predict approaches to wind resource assessment for small-scale wind energy. Renew Energy 2014;63:162-71.
    • (2014) Renew Energy , vol.63 , pp. 162-171
    • Weekes, S.M.1    Tomlin, A.S.2
  • 20
    • 84881171848 scopus 로고    scopus 로고
    • A review of measure-correlate-predict (MCP) methods used to estimate long-term wind characteristics at a target site
    • Carta JA, Velázquez S, Cabrera P. A review of measure-correlate-predict (MCP) methods used to estimate long-term wind characteristics at a target site. Renew Sustain Energy Rev 2013;27:362-400.
    • (2013) Renew Sustain Energy Rev , vol.27 , pp. 362-400
    • Carta, J.A.1    Velázquez, S.2    Cabrera, P.3
  • 21
    • 38349108557 scopus 로고    scopus 로고
    • Analysis of wind power generation and prediction using ANN: a case study
    • Carolin MM, Fernandez E. Analysis of wind power generation and prediction using ANN: a case study. Renew Energy 2008;33:986-92.
    • (2008) Renew Energy , vol.33 , pp. 986-992
    • Carolin, M.M.1    Fernandez, E.2
  • 22
    • 71849085127 scopus 로고    scopus 로고
    • The application of artificial neural networks to mapping of wind speed profile for energy application in Nigeria
    • Fadare DA. The application of artificial neural networks to mapping of wind speed profile for energy application in Nigeria. Appl Energy 2010;87: 934-42.
    • (2010) Appl Energy , vol.87 , pp. 934-942
    • Fadare, D.A.1
  • 23
    • 77953137822 scopus 로고    scopus 로고
    • On comparing three artificial neural networks for wind speed forecasting
    • Li G, Shi J. On comparing three artificial neural networks for wind speed forecasting. Appl Energy 2010;87:2313-20.
    • (2010) Appl Energy , vol.87 , pp. 2313-2320
    • Li, G.1    Shi, J.2
  • 25
    • 0036779031 scopus 로고    scopus 로고
    • A novel approach for the forecasting of mean hourly wind speed time series
    • Sfetsos A. A novel approach for the forecasting of mean hourly wind speed time series. Renew Energy 2002;27:163-74.
    • (2002) Renew Energy , vol.27 , pp. 163-174
    • Sfetsos, A.1
  • 26
    • 51849142610 scopus 로고    scopus 로고
    • Short term wind speed forecasting in La Venta, Oaxaca, Mexico, using artificial neural networks
    • Cadenas E, Rivera W. Short term wind speed forecasting in La Venta, Oaxaca, Mexico, using artificial neural networks. Renew Energy 2009;34:274-8.
    • (2009) Renew Energy , vol.34 , pp. 274-278
    • Cadenas, E.1    Rivera, W.2
  • 29
    • 77954315872 scopus 로고    scopus 로고
    • Wind speed forecasting in three different regions of Mexico, using a hybrid ARIMA-ANN model
    • Cadenas E, Rivera W. Wind speed forecasting in three different regions of Mexico, using a hybrid ARIMA-ANN model. Renew Energy 2010;35:2732-8.
    • (2010) Renew Energy , vol.35 , pp. 2732-2738
    • Cadenas, E.1    Rivera, W.2
  • 30
    • 79959855553 scopus 로고    scopus 로고
    • Comparison between ANNs and linear MCP algorithms in the long-term estimation of the cost per kWh produced by a wind turbine at a candidate site: a case study in the Canary Islands
    • Velázquez S, Carta JA, Matías JM. Comparison between ANNs and linear MCP algorithms in the long-term estimation of the cost per kWh produced by a wind turbine at a candidate site: a case study in the Canary Islands. Appl Energy 2011;88:3869-81.
    • (2011) Appl Energy , vol.88 , pp. 3869-3881
    • Velázquez, S.1    Carta, J.A.2    Matías, J.M.3
  • 31
    • 80052542435 scopus 로고    scopus 로고
    • Application of artificial neural networks for the spatial estimation of wind speed in a coastal region with complex topography
    • Philippopoulos K, Deligiorgi D. Application of artificial neural networks for the spatial estimation of wind speed in a coastal region with complex topography. Renew Energy 2012;38:75-82.
    • (2012) Renew Energy , vol.38 , pp. 75-82
    • Philippopoulos, K.1    Deligiorgi, D.2
  • 32
    • 34250762015 scopus 로고    scopus 로고
    • Application of artificial neural networks for the wind speed prediction of target station using reference stations data
    • Bilgili M, Sahin B, Yasar A. Application of artificial neural networks for the wind speed prediction of target station using reference stations data. Renew Energy 2007;32:2350-60.
    • (2007) Renew Energy , vol.32 , pp. 2350-2360
    • Bilgili, M.1    Sahin, B.2    Yasar, A.3
  • 34
    • 1642310555 scopus 로고    scopus 로고
    • Correlation of wind speed between neighboring measuring stations
    • Bechrakis DA, Sparis PD. Correlation of wind speed between neighboring measuring stations. IEEE Trans Energy Convers 2004:400-4.
    • (2004) IEEE Trans Energy Convers , pp. 400-404
    • Bechrakis, D.A.1    Sparis, P.D.2
  • 35
    • 0023855839 scopus 로고
    • An introduction to neural computing
    • Kohonen T. An introduction to neural computing. Neural Netw 1988;1:3-16.
    • (1988) Neural Netw , vol.1 , pp. 3-16
    • Kohonen, T.1
  • 36
    • 0014855486 scopus 로고
    • Diuranal variation of onshore wind speed near a coastline
    • Yu T-W, Wagner NK. Diuranal variation of onshore wind speed near a coastline. J Appl Meteorol 1970;9:760-6.
    • (1970) J Appl Meteorol , vol.9 , pp. 760-766
    • Yu, T.-W.1    Wagner, N.K.2
  • 37
    • 34248666089 scopus 로고    scopus 로고
    • Influence of dense surface meteorological data assimilation on the prediction accuracy of ozone pollution in the southeastern coastal area of the Korean Peninsula
    • Lee S-H, Kim Y-K, Kim H-S, Lee H-W. Influence of dense surface meteorological data assimilation on the prediction accuracy of ozone pollution in the southeastern coastal area of the Korean Peninsula. Atmos Environ 2007;41: 4451-65.
    • (2007) Atmos Environ , vol.41 , pp. 4451-4465
    • Lee, S.-H.1    Kim, Y.-K.2    Kim, H.-S.3    Lee, H.-W.4
  • 38
    • 37249059784 scopus 로고    scopus 로고
    • Satellite-based assessment of the impact of seasurface winds on regional atmospheric circulations over the Korean Peninsula
    • Lee S-H, Kim D-H, Lee H-W. Satellite-based assessment of the impact of seasurface winds on regional atmospheric circulations over the Korean Peninsula. Int J Remote Sens 2008;29:331-54.
    • (2008) Int J Remote Sens , vol.29 , pp. 331-354
    • Lee, S.-H.1    Kim, D.-H.2    Lee, H.-W.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.