-
2
-
-
84905965765
-
Big data and new knowledge in medicine: the thinking, training, and tools needed for a learning health system
-
Krumholz HM. Big data and new knowledge in medicine: the thinking, training, and tools needed for a learning health system. Health Aff(Millwood) (2014) 33:1163-70. doi:10.1377/hlthaff.2014.0053.
-
(2014)
Health Aff(Millwood)
, vol.33
, pp. 1163-1170
-
-
Krumholz, H.M.1
-
3
-
-
84905986049
-
Rapid learning: a breakthrough agenda
-
Etheredge LM. Rapid learning: a breakthrough agenda. Health Aff(Millwood) (2014) 33:1155-62. doi:10.1377/hlthaff.2014.0043.
-
(2014)
Health Aff(Millwood)
, vol.33
, pp. 1155-1162
-
-
Etheredge, L.M.1
-
4
-
-
85017288567
-
Managing large-scale genomic datasets and translation into clinical practice
-
Lecroq T, Soualmia LF. Managing large-scale genomic datasets and translation into clinical practice. Yearb Med Inform (2014) 9:212-4. doi:10.15265/IY-2014-0039.
-
(2014)
Yearb Med Inform
, vol.9
, pp. 212-214
-
-
Lecroq, T.1
Soualmia, L.F.2
-
5
-
-
84929050576
-
The National Institutes of Health's Big Data to Knowledge (BD2K) initiative: capitalizing on biomedical big data
-
Margolis R, Derr L, Dunn M, Huerta M, Larkin J, Sheehan J, et al. The National Institutes of Health's Big Data to Knowledge (BD2K) initiative: capitalizing on biomedical big data. J Am Med Inform Assoc (2014) 21:957-8. doi:10.1136/amiajnl-2014-002974.
-
(2014)
J Am Med Inform Assoc
, vol.21
, pp. 957-958
-
-
Margolis, R.1
Derr, L.2
Dunn, M.3
Huerta, M.4
Larkin, J.5
Sheehan, J.6
-
6
-
-
84904729561
-
Big data versus the big C
-
Savage N. Big data versus the big C. Sci Am (2014) 311:S20-1. doi:10.1038/scientificamerican0714-S20.
-
(2014)
Sci Am
, vol.311
, pp. S20-S21
-
-
Savage, N.1
-
7
-
-
84921889804
-
Can big data cure cancer?
-
Helft M. Can big data cure cancer? Fortune (2014) 170:70-4.
-
(2014)
Fortune
, vol.170
, pp. 70-74
-
-
Helft, M.1
-
8
-
-
84897906164
-
Big data, advanced analytics and the future of comparative effectiveness research
-
Berger ML, Doban V. Big data, advanced analytics and the future of comparative effectiveness research. J Comp EffRes (2014) 3:167-76. doi:10.2217/cer.14.2.
-
(2014)
J Comp EffRes
, vol.3
, pp. 167-176
-
-
Berger, M.L.1
Doban, V.2
-
10
-
-
84909954538
-
The evolution of cancer registration
-
Rashbass J, Peake M. The evolution of cancer registration. Eur J Cancer Care (2014) 23:757-9. doi:10.1111/ecc.12259.
-
(2014)
Eur J Cancer Care
, vol.23
, pp. 757-759
-
-
Rashbass, J.1
Peake, M.2
-
11
-
-
84905994860
-
Big data in health: a new era for research and patient care
-
Weil AR. Big data in health: a new era for research and patient care. Health Aff(Millwood) (2014) 33:1110. doi:10.1377/hlthaff.2014.0689.
-
(2014)
Health Aff(Millwood)
, vol.33
, pp. 1110
-
-
Weil, A.R.1
-
12
-
-
84908020137
-
Big data for population-based cancer research: the integrated cancer information and surveillance system
-
Meyer A-M, Olshan AF, Green L, Meyer A, Wheeler SB, Basch E, et al. Big data for population-based cancer research: the integrated cancer information and surveillance system. N C Med J (2014) 75:265-9.
-
(2014)
N C Med J
, vol.75
, pp. 265-269
-
-
Meyer, A.-M.1
Olshan, A.F.2
Green, L.3
Meyer, A.4
Wheeler, S.B.5
Basch, E.6
-
13
-
-
84907442845
-
Mathematical modeling for novel cancer drug discovery and development
-
Zhang P, Brusic V. Mathematical modeling for novel cancer drug discovery and development. Expert Opin Drug Discov (2014) 9:1133-50. doi:10.1517/17460441.2014.941351.
-
(2014)
Expert Opin Drug Discov
, vol.9
, pp. 1133-1150
-
-
Zhang, P.1
Brusic, V.2
-
14
-
-
84961589247
-
Topic modeling for cluster analysis of large biological and medical datasets
-
Zhao W, Zou W, Chen JJ. Topic modeling for cluster analysis of large biological and medical datasets. BMC Bioinformatics (2014) 15(Suppl 11):S11. doi:10.1186/1471-2105-15-S11-S11.
-
(2014)
BMC Bioinformatics
, vol.15
, pp. S11
-
-
Zhao, W.1
Zou, W.2
Chen, J.J.3
-
15
-
-
77953842860
-
Sharing medical data for health research: the early personal health record experience
-
Weitzman ER, Kaci L, Mandl KD. Sharing medical data for health research: the early personal health record experience. J Med Internet Res (2010) 12:e14. doi:10.2196/jmir.1356.
-
(2010)
J Med Internet Res
, vol.12
-
-
Weitzman, E.R.1
Kaci, L.2
Mandl, K.D.3
-
16
-
-
84905994854
-
The legal and ethical concerns that arise from using complex predictive analytics in health care
-
Cohen IG, Amarasingham R, Shah A, Xie B, Lo B. The legal and ethical concerns that arise from using complex predictive analytics in health care. Health Aff(Millwood) (2014) 33:1139-47. doi:10.1377/hlthaff.2014.0048.
-
(2014)
Health Aff(Millwood)
, vol.33
, pp. 1139-1147
-
-
Cohen, I.G.1
Amarasingham, R.2
Shah, A.3
Xie, B.4
Lo, B.5
-
18
-
-
84916203454
-
Creating a data exchange strategy for radiotherapy research: towards federated databases and anonymised public datasets
-
Skripcak T, Belka C, Bosch W, Brink C, Brunner T, Budach V, et al. Creating a data exchange strategy for radiotherapy research: towards federated databases and anonymised public datasets. Radiother Oncol (2014) 113:303-9. doi:10.1016/j.radonc.2014.10.001.
-
(2014)
Radiother Oncol
, vol.113
, pp. 303-309
-
-
Skripcak, T.1
Belka, C.2
Bosch, W.3
Brink, C.4
Brunner, T.5
Budach, V.6
-
19
-
-
84905858537
-
Considerations for observational research using large data sets in radiation oncology
-
Jagsi R, Bekelman JE, Chen A, Chen RC, Hoffman K, Shih Y-CT, et al. Considerations for observational research using large data sets in radiation oncology. Int J Radiat Oncol Biol Phys (2014) 90:11-24. doi:10.1016/j.ijrobp.2014.05.013.
-
(2014)
Int J Radiat Oncol Biol Phys
, vol.90
, pp. 11-24
-
-
Jagsi, R.1
Bekelman, J.E.2
Chen, A.3
Chen, R.C.4
Hoffman, K.5
Shih, Y.-C.T.6
-
20
-
-
84892415001
-
Opportunities and challenges of clinical research in the big data era: from RCT to BCT
-
Wang SD. Opportunities and challenges of clinical research in the big data era: from RCT to BCT. J Thorac Dis (2013) 5:721-3. doi:10.3978/j.issn.2072-1439.2013.06.24.
-
(2013)
J Thorac Dis
, vol.5
, pp. 721-723
-
-
Wang, S.D.1
-
21
-
-
84905967661
-
Four health data networks illustrate the potential for a shared national multipurpose big-data network
-
Curtis LH, Brown J, Platt R. Four health data networks illustrate the potential for a shared national multipurpose big-data network. Health Aff(Millwood) (2014) 33:1178-86. doi:10.1377/hlthaff.2014.0121.
-
(2014)
Health Aff(Millwood)
, vol.33
, pp. 1178-1186
-
-
Curtis, L.H.1
Brown, J.2
Platt, R.3
-
22
-
-
84920813802
-
Big Data V4 for integrating patient reported outcomes and quality-of-life indices in clinical practice
-
Sarin R. Big Data V4 for integrating patient reported outcomes and quality-of-life indices in clinical practice. J Cancer Res Ther (2014) 10:453-5.
-
(2014)
J Cancer Res Ther
, vol.10
, pp. 453-455
-
-
Sarin, R.1
-
23
-
-
84903648162
-
Clinic-genomic association mining for colorectal cancer using publicly available datasets
-
Liu F, Feng Y, Li Z, Pan C, Su Y, Yang R, et al. Clinic-genomic association mining for colorectal cancer using publicly available datasets. Biomed Res Int (2014) 2014:170289. doi:10.1155/2014/170289.
-
(2014)
Biomed Res Int
, vol.2014
-
-
Liu, F.1
Feng, Y.2
Li, Z.3
Pan, C.4
Su, Y.5
Yang, R.6
-
24
-
-
84907500717
-
Review of current methods, applications, and data management for the bioinformatics analysis of whole exome sequencing
-
Bao R, Huang L, Andrade J, Tan W, Kibbe WA, Jiang H, et al. Review of current methods, applications, and data management for the bioinformatics analysis of whole exome sequencing. Cancer Inform (2014) 13:67-82. doi:10.4137/CIN.S13779.
-
(2014)
Cancer Inform
, vol.13
, pp. 67-82
-
-
Bao, R.1
Huang, L.2
Andrade, J.3
Tan, W.4
Kibbe, W.A.5
Jiang, H.6
-
25
-
-
84904969252
-
Whole transcriptome RNA-seq analysis: tumorigenesis and metastasis of melanoma
-
Zhao H, Li Y, Wang S, Yang Y, Wang J, Ruan X, et al. Whole transcriptome RNA-seq analysis: tumorigenesis and metastasis of melanoma. Gene (2014) 548:234-43. doi:10.1016/j.gene.2014.07.038.
-
(2014)
Gene
, vol.548
, pp. 234-243
-
-
Zhao, H.1
Li, Y.2
Wang, S.3
Yang, Y.4
Wang, J.5
Ruan, X.6
-
26
-
-
85017289099
-
EHR big data deep phenotyping. Contribution of the IMIA genomic medicine working group
-
Frey LJ, Lenert L, Lopez-Campos G. EHR big data deep phenotyping. Contribution of the IMIA genomic medicine working group. Yearb Med Inform (2014) 9:206-11. doi:10.15265/IY-2014-0006.
-
(2014)
Yearb Med Inform
, vol.9
, pp. 206-211
-
-
Frey, L.J.1
Lenert, L.2
Lopez-Campos, G.3
-
27
-
-
84937559607
-
Supervised multi-view canonical correlation analysis (sMVCCA): integrating histologic and proteomic features for predicting recurrent prostate cancer
-
Lee G, Singanamalli A, Wang H, Feldman M, Master S, Shih N, et al. Supervised multi-view canonical correlation analysis (sMVCCA): integrating histologic and proteomic features for predicting recurrent prostate cancer. IEEE Trans Med Imaging (2015) 34(1):284-97. doi:10.1109/TMI.2014.2355175.
-
(2015)
IEEE Trans Med Imaging
, vol.34
, Issue.1
, pp. 284-297
-
-
Lee, G.1
Singanamalli, A.2
Wang, H.3
Feldman, M.4
Master, S.5
Shih, N.6
-
28
-
-
84903188157
-
Radiogenomics: radiobiology enters the era of big data and team science
-
Rosenstein BS, West CM, Bentzen SM, Alsner J, Andreassen CN, Azria D, et al. Radiogenomics: radiobiology enters the era of big data and team science. Int J Radiat Oncol Biol Phys (2014) 89:709-13. doi:10.1016/j.ijrobp.2014.03.009.
-
(2014)
Int J Radiat Oncol Biol Phys
, vol.89
, pp. 709-713
-
-
Rosenstein, B.S.1
West, C.M.2
Bentzen, S.M.3
Alsner, J.4
Andreassen, C.N.5
Azria, D.6
-
29
-
-
84872280727
-
Universal health coverage-big thinking versus big data
-
Garrison LP Jr. Universal health coverage-big thinking versus big data. Value Health (2013) 16:S1-3. doi:10.1016/j.jval.2012.10.016.
-
(2013)
Value Health
, vol.16
, pp. S1-S3
-
-
Garrison, L.P.1
|