메뉴 건너뛰기




Volumn 5, Issue DEC, 2015, Pages

Big Data and comparative effectiveness research in radiation oncology: Synergy and accelerated discovery

Author keywords

Big data; CER; Effectiveness; EMR; Gene; Radiation

Indexed keywords

CANCER THERAPY; COMPARATIVE EFFECTIVENESS; CONSENSUS DEVELOPMENT; DECISION MAKING; ELECTRONIC MEDICAL RECORD; GENOMICS; HEALTH CARE SYSTEM; HUMAN; INFORMATION TECHNOLOGY; LEARNING; PERSONALIZED MEDICINE; RADIOTHERAPY;

EID: 84954469853     PISSN: None     EISSN: 2234943X     Source Type: Journal    
DOI: 10.3389/fonc.2015.00274     Document Type: Article
Times cited : (17)

References (29)
  • 2
    • 84905965765 scopus 로고    scopus 로고
    • Big data and new knowledge in medicine: the thinking, training, and tools needed for a learning health system
    • Krumholz HM. Big data and new knowledge in medicine: the thinking, training, and tools needed for a learning health system. Health Aff(Millwood) (2014) 33:1163-70. doi:10.1377/hlthaff.2014.0053.
    • (2014) Health Aff(Millwood) , vol.33 , pp. 1163-1170
    • Krumholz, H.M.1
  • 3
    • 84905986049 scopus 로고    scopus 로고
    • Rapid learning: a breakthrough agenda
    • Etheredge LM. Rapid learning: a breakthrough agenda. Health Aff(Millwood) (2014) 33:1155-62. doi:10.1377/hlthaff.2014.0043.
    • (2014) Health Aff(Millwood) , vol.33 , pp. 1155-1162
    • Etheredge, L.M.1
  • 4
    • 85017288567 scopus 로고    scopus 로고
    • Managing large-scale genomic datasets and translation into clinical practice
    • Lecroq T, Soualmia LF. Managing large-scale genomic datasets and translation into clinical practice. Yearb Med Inform (2014) 9:212-4. doi:10.15265/IY-2014-0039.
    • (2014) Yearb Med Inform , vol.9 , pp. 212-214
    • Lecroq, T.1    Soualmia, L.F.2
  • 5
    • 84929050576 scopus 로고    scopus 로고
    • The National Institutes of Health's Big Data to Knowledge (BD2K) initiative: capitalizing on biomedical big data
    • Margolis R, Derr L, Dunn M, Huerta M, Larkin J, Sheehan J, et al. The National Institutes of Health's Big Data to Knowledge (BD2K) initiative: capitalizing on biomedical big data. J Am Med Inform Assoc (2014) 21:957-8. doi:10.1136/amiajnl-2014-002974.
    • (2014) J Am Med Inform Assoc , vol.21 , pp. 957-958
    • Margolis, R.1    Derr, L.2    Dunn, M.3    Huerta, M.4    Larkin, J.5    Sheehan, J.6
  • 6
    • 84904729561 scopus 로고    scopus 로고
    • Big data versus the big C
    • Savage N. Big data versus the big C. Sci Am (2014) 311:S20-1. doi:10.1038/scientificamerican0714-S20.
    • (2014) Sci Am , vol.311 , pp. S20-S21
    • Savage, N.1
  • 7
    • 84921889804 scopus 로고    scopus 로고
    • Can big data cure cancer?
    • Helft M. Can big data cure cancer? Fortune (2014) 170:70-4.
    • (2014) Fortune , vol.170 , pp. 70-74
    • Helft, M.1
  • 8
    • 84897906164 scopus 로고    scopus 로고
    • Big data, advanced analytics and the future of comparative effectiveness research
    • Berger ML, Doban V. Big data, advanced analytics and the future of comparative effectiveness research. J Comp EffRes (2014) 3:167-76. doi:10.2217/cer.14.2.
    • (2014) J Comp EffRes , vol.3 , pp. 167-176
    • Berger, M.L.1    Doban, V.2
  • 10
    • 84909954538 scopus 로고    scopus 로고
    • The evolution of cancer registration
    • Rashbass J, Peake M. The evolution of cancer registration. Eur J Cancer Care (2014) 23:757-9. doi:10.1111/ecc.12259.
    • (2014) Eur J Cancer Care , vol.23 , pp. 757-759
    • Rashbass, J.1    Peake, M.2
  • 11
    • 84905994860 scopus 로고    scopus 로고
    • Big data in health: a new era for research and patient care
    • Weil AR. Big data in health: a new era for research and patient care. Health Aff(Millwood) (2014) 33:1110. doi:10.1377/hlthaff.2014.0689.
    • (2014) Health Aff(Millwood) , vol.33 , pp. 1110
    • Weil, A.R.1
  • 12
    • 84908020137 scopus 로고    scopus 로고
    • Big data for population-based cancer research: the integrated cancer information and surveillance system
    • Meyer A-M, Olshan AF, Green L, Meyer A, Wheeler SB, Basch E, et al. Big data for population-based cancer research: the integrated cancer information and surveillance system. N C Med J (2014) 75:265-9.
    • (2014) N C Med J , vol.75 , pp. 265-269
    • Meyer, A.-M.1    Olshan, A.F.2    Green, L.3    Meyer, A.4    Wheeler, S.B.5    Basch, E.6
  • 13
    • 84907442845 scopus 로고    scopus 로고
    • Mathematical modeling for novel cancer drug discovery and development
    • Zhang P, Brusic V. Mathematical modeling for novel cancer drug discovery and development. Expert Opin Drug Discov (2014) 9:1133-50. doi:10.1517/17460441.2014.941351.
    • (2014) Expert Opin Drug Discov , vol.9 , pp. 1133-1150
    • Zhang, P.1    Brusic, V.2
  • 14
    • 84961589247 scopus 로고    scopus 로고
    • Topic modeling for cluster analysis of large biological and medical datasets
    • Zhao W, Zou W, Chen JJ. Topic modeling for cluster analysis of large biological and medical datasets. BMC Bioinformatics (2014) 15(Suppl 11):S11. doi:10.1186/1471-2105-15-S11-S11.
    • (2014) BMC Bioinformatics , vol.15 , pp. S11
    • Zhao, W.1    Zou, W.2    Chen, J.J.3
  • 15
    • 77953842860 scopus 로고    scopus 로고
    • Sharing medical data for health research: the early personal health record experience
    • Weitzman ER, Kaci L, Mandl KD. Sharing medical data for health research: the early personal health record experience. J Med Internet Res (2010) 12:e14. doi:10.2196/jmir.1356.
    • (2010) J Med Internet Res , vol.12
    • Weitzman, E.R.1    Kaci, L.2    Mandl, K.D.3
  • 16
    • 84905994854 scopus 로고    scopus 로고
    • The legal and ethical concerns that arise from using complex predictive analytics in health care
    • Cohen IG, Amarasingham R, Shah A, Xie B, Lo B. The legal and ethical concerns that arise from using complex predictive analytics in health care. Health Aff(Millwood) (2014) 33:1139-47. doi:10.1377/hlthaff.2014.0048.
    • (2014) Health Aff(Millwood) , vol.33 , pp. 1139-1147
    • Cohen, I.G.1    Amarasingham, R.2    Shah, A.3    Xie, B.4    Lo, B.5
  • 18
    • 84916203454 scopus 로고    scopus 로고
    • Creating a data exchange strategy for radiotherapy research: towards federated databases and anonymised public datasets
    • Skripcak T, Belka C, Bosch W, Brink C, Brunner T, Budach V, et al. Creating a data exchange strategy for radiotherapy research: towards federated databases and anonymised public datasets. Radiother Oncol (2014) 113:303-9. doi:10.1016/j.radonc.2014.10.001.
    • (2014) Radiother Oncol , vol.113 , pp. 303-309
    • Skripcak, T.1    Belka, C.2    Bosch, W.3    Brink, C.4    Brunner, T.5    Budach, V.6
  • 20
    • 84892415001 scopus 로고    scopus 로고
    • Opportunities and challenges of clinical research in the big data era: from RCT to BCT
    • Wang SD. Opportunities and challenges of clinical research in the big data era: from RCT to BCT. J Thorac Dis (2013) 5:721-3. doi:10.3978/j.issn.2072-1439.2013.06.24.
    • (2013) J Thorac Dis , vol.5 , pp. 721-723
    • Wang, S.D.1
  • 21
    • 84905967661 scopus 로고    scopus 로고
    • Four health data networks illustrate the potential for a shared national multipurpose big-data network
    • Curtis LH, Brown J, Platt R. Four health data networks illustrate the potential for a shared national multipurpose big-data network. Health Aff(Millwood) (2014) 33:1178-86. doi:10.1377/hlthaff.2014.0121.
    • (2014) Health Aff(Millwood) , vol.33 , pp. 1178-1186
    • Curtis, L.H.1    Brown, J.2    Platt, R.3
  • 22
    • 84920813802 scopus 로고    scopus 로고
    • Big Data V4 for integrating patient reported outcomes and quality-of-life indices in clinical practice
    • Sarin R. Big Data V4 for integrating patient reported outcomes and quality-of-life indices in clinical practice. J Cancer Res Ther (2014) 10:453-5.
    • (2014) J Cancer Res Ther , vol.10 , pp. 453-455
    • Sarin, R.1
  • 23
    • 84903648162 scopus 로고    scopus 로고
    • Clinic-genomic association mining for colorectal cancer using publicly available datasets
    • Liu F, Feng Y, Li Z, Pan C, Su Y, Yang R, et al. Clinic-genomic association mining for colorectal cancer using publicly available datasets. Biomed Res Int (2014) 2014:170289. doi:10.1155/2014/170289.
    • (2014) Biomed Res Int , vol.2014
    • Liu, F.1    Feng, Y.2    Li, Z.3    Pan, C.4    Su, Y.5    Yang, R.6
  • 24
    • 84907500717 scopus 로고    scopus 로고
    • Review of current methods, applications, and data management for the bioinformatics analysis of whole exome sequencing
    • Bao R, Huang L, Andrade J, Tan W, Kibbe WA, Jiang H, et al. Review of current methods, applications, and data management for the bioinformatics analysis of whole exome sequencing. Cancer Inform (2014) 13:67-82. doi:10.4137/CIN.S13779.
    • (2014) Cancer Inform , vol.13 , pp. 67-82
    • Bao, R.1    Huang, L.2    Andrade, J.3    Tan, W.4    Kibbe, W.A.5    Jiang, H.6
  • 25
    • 84904969252 scopus 로고    scopus 로고
    • Whole transcriptome RNA-seq analysis: tumorigenesis and metastasis of melanoma
    • Zhao H, Li Y, Wang S, Yang Y, Wang J, Ruan X, et al. Whole transcriptome RNA-seq analysis: tumorigenesis and metastasis of melanoma. Gene (2014) 548:234-43. doi:10.1016/j.gene.2014.07.038.
    • (2014) Gene , vol.548 , pp. 234-243
    • Zhao, H.1    Li, Y.2    Wang, S.3    Yang, Y.4    Wang, J.5    Ruan, X.6
  • 26
    • 85017289099 scopus 로고    scopus 로고
    • EHR big data deep phenotyping. Contribution of the IMIA genomic medicine working group
    • Frey LJ, Lenert L, Lopez-Campos G. EHR big data deep phenotyping. Contribution of the IMIA genomic medicine working group. Yearb Med Inform (2014) 9:206-11. doi:10.15265/IY-2014-0006.
    • (2014) Yearb Med Inform , vol.9 , pp. 206-211
    • Frey, L.J.1    Lenert, L.2    Lopez-Campos, G.3
  • 27
    • 84937559607 scopus 로고    scopus 로고
    • Supervised multi-view canonical correlation analysis (sMVCCA): integrating histologic and proteomic features for predicting recurrent prostate cancer
    • Lee G, Singanamalli A, Wang H, Feldman M, Master S, Shih N, et al. Supervised multi-view canonical correlation analysis (sMVCCA): integrating histologic and proteomic features for predicting recurrent prostate cancer. IEEE Trans Med Imaging (2015) 34(1):284-97. doi:10.1109/TMI.2014.2355175.
    • (2015) IEEE Trans Med Imaging , vol.34 , Issue.1 , pp. 284-297
    • Lee, G.1    Singanamalli, A.2    Wang, H.3    Feldman, M.4    Master, S.5    Shih, N.6
  • 29
    • 84872280727 scopus 로고    scopus 로고
    • Universal health coverage-big thinking versus big data
    • Garrison LP Jr. Universal health coverage-big thinking versus big data. Value Health (2013) 16:S1-3. doi:10.1016/j.jval.2012.10.016.
    • (2013) Value Health , vol.16 , pp. S1-S3
    • Garrison, L.P.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.