-
1
-
-
84865120266
-
Opportunities and Challenges for a Sustainable Energy Future
-
Chu, S.; Majumdar, A. Opportunities and Challenges for a Sustainable Energy Future Nature 2012, 488, 294-303 10.1038/nature11475
-
(2012)
Nature
, vol.488
, pp. 294-303
-
-
Chu, S.1
Majumdar, A.2
-
2
-
-
79960958992
-
The Outlook for Population Growth
-
Lee, R. The Outlook for Population Growth Science 2011, 333, 569-573 10.1126/science.1208859
-
(2011)
Science
, vol.333
, pp. 569-573
-
-
Lee, R.1
-
3
-
-
83655170426
-
-
International Energy Agency. International Energy Agency
-
International Energy Agency. World Energy Outlook 2011; International Energy Agency, 2011; pp 540-550. http://www.worldenergyoutlook.org.
-
(2011)
World Energy Outlook 2011
, pp. 540-550
-
-
-
4
-
-
84930958812
-
Pain without gain? Reviewing the Risks and Rewards of Investing in Russian Coal-fired Electricity
-
Gorbacheva, N. V.; Sovacool, B. K. Pain without gain? Reviewing the Risks and Rewards of Investing in Russian Coal-fired Electricity Appl. Energy 2015, 154, 970-986 10.1016/j.apenergy.2015.05.066
-
(2015)
Appl. Energy
, vol.154
, pp. 970-986
-
-
Gorbacheva, N.V.1
Sovacool, B.K.2
-
5
-
-
78651087929
-
Role of Renewable Energy Sources in Environmental Protection: A Review
-
Panwar, N. L.; Kaushik, S. C.; Kothari, S. Role of Renewable Energy Sources in Environmental Protection: A Review Renewable Sustainable Energy Rev. 2011, 15, 1513-1524 10.1016/j.rser.2010.11.037
-
(2011)
Renewable Sustainable Energy Rev.
, vol.15
, pp. 1513-1524
-
-
Panwar, N.L.1
Kaushik, S.C.2
Kothari, S.3
-
6
-
-
84902203625
-
Theoretical Comparison, Equivalent Transformation, and Conjunction Operations of Electromagnetic Induction Generator and Triboelectric Nanogenerator for Harvesting Mechanical Energy
-
Zhang, C.; Tang, W.; Han, C. B.; Fan, F.; Wang, Z. L. Theoretical Comparison, Equivalent Transformation, and Conjunction Operations of Electromagnetic Induction Generator and Triboelectric Nanogenerator for Harvesting Mechanical Energy Adv. Mater. 2014, 26, 3580-3591 10.1002/adma.201400207
-
(2014)
Adv. Mater.
, vol.26
, pp. 3580-3591
-
-
Zhang, C.1
Tang, W.2
Han, C.B.3
Fan, F.4
Wang, Z.L.5
-
7
-
-
84888868810
-
Triboelectric Nanogenerators as New Energy Technology for Self-Powered Systems and as Active Mechanical and Chemical Sensors
-
Wang, Z. L. Triboelectric Nanogenerators as New Energy Technology for Self-Powered Systems and as Active Mechanical and Chemical Sensors ACS Nano 2013, 7, 9533-9557 10.1021/nn404614z
-
(2013)
ACS Nano
, vol.7
, pp. 9533-9557
-
-
Wang, Z.L.1
-
8
-
-
84908607695
-
Self-powered Velocity and Trajectory Tracking Sensor Array Made of Planar Triboelectric Nanogenerator Pixels
-
Bao Han, C.; Zhang, C.; Li, X. H.; Zhang, L.; Zhou, T.; Hu, W.; Lin Wang, Z. Self-powered Velocity and Trajectory Tracking Sensor Array Made of Planar Triboelectric Nanogenerator Pixels Nano Energy 2014, 9, 325-333 10.1016/j.nanoen.2014.07.025
-
(2014)
Nano Energy
, vol.9
, pp. 325-333
-
-
Bao Han, C.1
Zhang, C.2
Li, X.H.3
Zhang, L.4
Zhou, T.5
Hu, W.6
Lin Wang, Z.7
-
9
-
-
84930225348
-
Motion-Driven Electrochromic Reactions for Self-Powered Smart Window System
-
Yeh, M. H.; Lin, L.; Yang, P. K.; Wang, Z. L. Motion-Driven Electrochromic Reactions for Self-Powered Smart Window System ACS Nano 2015, 9, 4757-4765 10.1021/acsnano.5b00706
-
(2015)
ACS Nano
, vol.9
, pp. 4757-4765
-
-
Yeh, M.H.1
Lin, L.2
Yang, P.K.3
Wang, Z.L.4
-
10
-
-
84928978915
-
Hybridized Electromagnetic Triboelectric Nanogenerator for Scavenging Air-Flow Energy to Sustainably Power Temperature Sensors
-
Wang, X.; Wang, S. H.; Yang, Y.; Wang, Z. L. Hybridized Electromagnetic Triboelectric Nanogenerator for Scavenging Air-Flow Energy to Sustainably Power Temperature Sensors ACS Nano 2015, 9, 4553-4562 10.1021/acsnano.5b01187
-
(2015)
ACS Nano
, vol.9
, pp. 4553-4562
-
-
Wang, X.1
Wang, S.H.2
Yang, Y.3
Wang, Z.L.4
-
11
-
-
84921746992
-
Triboelectric Energy Harvester Based on Wearable Textile Platforms Employing Various Surface Morphologies
-
Lee, S.; Ko, W.; Oh, Y.; Lee, J.; Baek, G.; Lee, Y.; Sohn, J.; Cha, S.; Kim, J.; Park, J.; Hong, J. Triboelectric Energy Harvester Based on Wearable Textile Platforms Employing Various Surface Morphologies Nano Energy 2015, 12, 410-418 10.1016/j.nanoen.2015.01.009
-
(2015)
Nano Energy
, vol.12
, pp. 410-418
-
-
Lee, S.1
Ko, W.2
Oh, Y.3
Lee, J.4
Baek, G.5
Lee, Y.6
Sohn, J.7
Cha, S.8
Kim, J.9
Park, J.10
Hong, J.11
-
12
-
-
84934282756
-
A Flexible, Stretchable and Shape-Adaptive Approach for Versatile Energy Conversion and Self-Powered Biomedical Monitoring
-
Yang, P. K.; Lin, L.; Yi, F.; Li, X.; Pradel, K. C.; Zi, Y.; Wu, C. I.; He, J. H.; Zhang, Y.; Wang, Z. L. A Flexible, Stretchable and Shape-Adaptive Approach for Versatile Energy Conversion and Self-Powered Biomedical Monitoring Adv. Mater. 2015, 27, 3817-3824 10.1002/adma.201500652
-
(2015)
Adv. Mater.
, vol.27
, pp. 3817-3824
-
-
Yang, P.K.1
Lin, L.2
Yi, F.3
Li, X.4
Pradel, K.C.5
Zi, Y.6
Wu, C.I.7
He, J.H.8
Zhang, Y.9
Wang, Z.L.10
-
13
-
-
84895830368
-
Radial-arrayed Rotary Electrification for High Performance Triboelectric Generator
-
Zhu, G.; Chen, J.; Zhang, T.; Jing, Q.; Wang, Z. L. Radial-arrayed Rotary Electrification for High Performance Triboelectric Generator Nat. Commun. 2014, 5, 3426-3434 10.1038/ncomms4426
-
(2014)
Nat. Commun.
, vol.5
, pp. 3426-3434
-
-
Zhu, G.1
Chen, J.2
Zhang, T.3
Jing, Q.4
Wang, Z.L.5
-
14
-
-
84900860461
-
Triboelectric Nanogenerator as an Active UV Photodetector
-
Lin, Z. H.; Cheng, G.; Yang, Y.; Zhou, Y. S.; Lee, S.; Wang, Z. L. Triboelectric Nanogenerator as an Active UV Photodetector Adv. Funct. Mater. 2014, 24, 2810-2816 10.1002/adfm.201302838
-
(2014)
Adv. Funct. Mater.
, vol.24
, pp. 2810-2816
-
-
Lin, Z.H.1
Cheng, G.2
Yang, Y.3
Zhou, Y.S.4
Lee, S.5
Wang, Z.L.6
-
15
-
-
84924754596
-
High Power Triboelectric Nanogenerator Based on Printed Circuit Board (PCB) Technology
-
Han, C.; Zhang, C.; Tang, W.; Li, X.; Wang, Z. L. High Power Triboelectric Nanogenerator Based on Printed Circuit Board (PCB) Technology Nano Res. 2015, 8, 722-730 10.1007/s12274-014-0555-3
-
(2015)
Nano Res.
, vol.8
, pp. 722-730
-
-
Han, C.1
Zhang, C.2
Tang, W.3
Li, X.4
Wang, Z.L.5
-
16
-
-
84891359660
-
Motion Charged Battery as Sustainable Flexible-Power-Unit
-
Wang, S. H.; Lin, Z. H.; Niu, S. M.; Lin, L.; Xie, Y. N.; Pradel, K. C.; Wang, Z. L. Motion Charged Battery as Sustainable Flexible-Power-Unit ACS Nano 2013, 7, 11263-11271 10.1021/nn4050408
-
(2013)
ACS Nano
, vol.7
, pp. 11263-11271
-
-
Wang, S.H.1
Lin, Z.H.2
Niu, S.M.3
Lin, L.4
Xie, Y.N.5
Pradel, K.C.6
Wang, Z.L.7
-
17
-
-
85027934180
-
A Self-Charging Power Unit by Integration of a Textile Triboelectric Nanogenerator and a Flexible Lithium-Ion Battery for Wearable Electronics
-
Pu, X.; Li, L.; Song, H.; Du, C.; Zhao, Z.; Jiang, C.; Cao, G.; Hu, W.; Wang, Z. L. A Self-Charging Power Unit by Integration of a Textile Triboelectric Nanogenerator and a Flexible Lithium-Ion Battery for Wearable Electronics Adv. Mater. 2015, 27, 2472-2478 10.1002/adma.201500311
-
(2015)
Adv. Mater.
, vol.27
, pp. 2472-2478
-
-
Pu, X.1
Li, L.2
Song, H.3
Du, C.4
Zhao, Z.5
Jiang, C.6
Cao, G.7
Hu, W.8
Wang, Z.L.9
-
18
-
-
84876154735
-
Recent Progress in High-voltage Lithium Ion Batteries
-
Hu, M.; Pang, X.; Zhou, Z. Recent Progress in High-voltage Lithium Ion Batteries J. Power Sources 2013, 237, 229-242 10.1016/j.jpowsour.2013.03.024
-
(2013)
J. Power Sources
, vol.237
, pp. 229-242
-
-
Hu, M.1
Pang, X.2
Zhou, Z.3
-
20
-
-
42749091389
-
Capacity Fading with Oxygen Loss for Manganese Spinels upon Cycling at Elevated Temperatures
-
Deng, B.; Nakamura, H.; Yoshio, M. Capacity Fading with Oxygen Loss for Manganese Spinels upon Cycling at Elevated Temperatures J. Power Sources 2008, 180, 864-868 10.1016/j.jpowsour.2008.02.071
-
(2008)
J. Power Sources
, vol.180
, pp. 864-868
-
-
Deng, B.1
Nakamura, H.2
Yoshio, M.3
-
21
-
-
33846242198
-
4 Cathode for Li-ion Rechargeable Batteries
-
4 Cathode for Li-ion Rechargeable Batteries J. Power Sources 2007, 164, 857-861 10.1016/j.jpowsour.2006.09.098
-
(2007)
J. Power Sources
, vol.164
, pp. 857-861
-
-
Singhal, R.1
Das, S.R.2
Tomar, M.S.3
Ovideo, O.4
Nieto, S.5
Melgarejo, R.E.6
Katiyar, R.S.7
-
23
-
-
0031124233
-
Phospho-olivines as Positive-Electrode Materials for Rechargeable Lithium Batteries
-
Padhi, A. K.; Nanjundaswamy, K. S.; Goodenough, J. B. Phospho-olivines as Positive-Electrode Materials for Rechargeable Lithium Batteries J. Electrochem. Soc. 1997, 144, 1188-1194 10.1149/1.1837571
-
(1997)
J. Electrochem. Soc.
, vol.144
, pp. 1188-1194
-
-
Padhi, A.K.1
Nanjundaswamy, K.S.2
Goodenough, J.B.3
-
24
-
-
84882286868
-
3/Conducting Polymer as a High Power 4 V-Class Lithium Battery Electrode
-
3/Conducting Polymer as a High Power 4 V-Class Lithium Battery Electrode Adv. Energy Mater. 2013, 3, 1004-1007 10.1002/aenm.201300205
-
(2013)
Adv. Energy Mater.
, vol.3
, pp. 1004-1007
-
-
Kim, J.1
Yoo, J.K.2
Jung, Y.S.3
Kang, K.4
-
25
-
-
84911444124
-
3 as a Bicontinuous Cathode with High-Rate Capability and Broad Temperature Adaptability
-
3 as a Bicontinuous Cathode with High-Rate Capability and Broad Temperature Adaptability Adv. Energy Mater. 2014, 4, 1400107-1400114 10.1002/aenm.201470089
-
(2014)
Adv. Energy Mater.
, vol.4
, pp. 1400107-1400114
-
-
Luo, Y.Z.1
Xu, X.2
Zhang, Y.X.3
Pi, Y.Q.4
Zhao, Y.L.5
Tian, X.C.6
An, Q.Y.7
Wei, Q.L.8
Mai, L.Q.9
-
26
-
-
77955816303
-
Lithium Iron Borates as High-Capacity Battery Electrodes
-
Yamada, A.; Iwane, N.; Harada, Y.; Nishimura, S.; Koyama, Y.; Tanaka, I. Lithium Iron Borates as High-Capacity Battery Electrodes Adv. Mater. 2010, 22, 3583-3587 10.1002/adma.201001039
-
(2010)
Adv. Mater.
, vol.22
, pp. 3583-3587
-
-
Yamada, A.1
Iwane, N.2
Harada, Y.3
Nishimura, S.4
Koyama, Y.5
Tanaka, I.6
-
27
-
-
80052235810
-
Recent Advances in the Research of Polyanion-type Cathode Materials for Li-ion Batteries
-
Gong, Z.; Yang, Y. Recent Advances in the Research of Polyanion-type Cathode Materials for Li-ion Batteries Energy Environ. Sci. 2011, 4, 3223-3242 10.1039/c0ee00713g
-
(2011)
Energy Environ. Sci.
, vol.4
, pp. 3223-3242
-
-
Gong, Z.1
Yang, Y.2
-
28
-
-
84901989765
-
3 Addition to the Olivine Phase: Understanding the Effect in Electrochemical Performance
-
3 Addition to the Olivine Phase: Understanding the Effect in Electrochemical Performance J. Phys. Chem. C 2014, 118, 11512-11525 10.1021/jp500343t
-
(2014)
J. Phys. Chem. C
, vol.118
, pp. 11512-11525
-
-
Sarkar, S.1
Mitra, S.2
-
30
-
-
79251593582
-
3 Nanobelts Prepared via Surfactant-assisted Fabrication
-
3 Nanobelts Prepared via Surfactant-assisted Fabrication J. Power Sources 2011, 196, 3646-3649 10.1016/j.jpowsour.2010.12.067
-
(2011)
J. Power Sources
, vol.196
, pp. 3646-3649
-
-
Pan, A.1
Choi, D.2
Zhang, J.G.3
Liang, S.4
Cao, G.5
Nie, Z.6
Arey, B.W.7
Liu, J.8
-
32
-
-
84859907372
-
-x/C Cathode Materials for Lithium-ion Batteries
-
-x/C Cathode Materials for Lithium-ion Batteries J. Power Sources 2012, 209, 251-256 10.1016/j.jpowsour.2012.02.110
-
(2012)
J. Power Sources
, vol.209
, pp. 251-256
-
-
Yan, J.1
Yuan, W.2
Tang, Z.Y.3
Xie, H.4
Mao, W.F.5
Ma, L.6
-
33
-
-
84920988658
-
3 Nanoparticles Encapsulated in a Carbon Matrix for High Power Lithium-ion Batteries
-
3 Nanoparticles Encapsulated in a Carbon Matrix for High Power Lithium-ion Batteries Nano Energy 2015, 12, 207-214 10.1016/j.nanoen.2014.12.008
-
(2015)
Nano Energy
, vol.12
, pp. 207-214
-
-
Zhang, X.1
Kühnel, R.S.2
Hu, H.3
Eder, D.4
Balducci, A.5
-
34
-
-
84879862427
-
3@C Core-shell Nanocomposite as a Superior Cathode Material for Lithium-ion Batteries
-
3@C Core-shell Nanocomposite as a Superior Cathode Material for Lithium-ion Batteries Nanoscale 2013, 5, 6485-6490 10.1039/c3nr01617j
-
(2013)
Nanoscale
, vol.5
, pp. 6485-6490
-
-
Duan, W.1
Hu, Z.2
Zhang, K.3
Cheng, F.4
Tao, Z.5
Chen, J.6
-
35
-
-
84862908144
-
Enhancing the Performances of Li-ion Batteries by Carbon-coating: Present and Future
-
Li, H.; Zhou, H. Enhancing the Performances of Li-ion Batteries by Carbon-coating: Present and Future Chem. Commun. 2012, 48, 1201-1217 10.1039/C1CC14764A
-
(2012)
Chem. Commun.
, vol.48
, pp. 1201-1217
-
-
Li, H.1
Zhou, H.2
-
36
-
-
84896817510
-
Noncontact Free-rotating Disk Triboelectric Nanogenerator as a Sustainable Energy Harvester and Self-powered Mechanical Sensor
-
Lin, L.; Wang, S.; Niu, S.; Liu, C.; Xie, Y.; Wang, Z. L. Noncontact Free-rotating Disk Triboelectric Nanogenerator as a Sustainable Energy Harvester and Self-powered Mechanical Sensor ACS Appl. Mater. Interfaces 2014, 6, 3031-3038 10.1021/am405637s
-
(2014)
ACS Appl. Mater. Interfaces
, vol.6
, pp. 3031-3038
-
-
Lin, L.1
Wang, S.2
Niu, S.3
Liu, C.4
Xie, Y.5
Wang, Z.L.6
-
37
-
-
84878132355
-
3/C Nanosphere Cathode Materials with Three-dimensional Continuous Electron Pathways
-
3/C Nanosphere Cathode Materials with Three-dimensional Continuous Electron Pathways Nanoscale 2013, 5, 4864-4869 10.1039/c3nr01490h
-
(2013)
Nanoscale
, vol.5
, pp. 4864-4869
-
-
Mai, L.1
Li, S.2
Dong, Y.3
Zhao, Y.4
Luo, Y.5
Xu, H.6
-
38
-
-
84896095101
-
Facile Green Extracellular Biosynthesis of CdS Quantum Dots by White Rot Fungus Phanerochaete Chrysosporium
-
Chen, G.; Yi, B.; Zeng, G.; Niu, Q.; Yan, M.; Chen, A.; Du, J.; Huang, J.; Zhang, Q. Facile Green Extracellular Biosynthesis of CdS Quantum Dots by White Rot Fungus Phanerochaete Chrysosporium Colloids Surf., B 2014, 117, 199-205 10.1016/j.colsurfb.2014.02.027
-
(2014)
Colloids Surf., B
, vol.117
, pp. 199-205
-
-
Chen, G.1
Yi, B.2
Zeng, G.3
Niu, Q.4
Yan, M.5
Chen, A.6
Du, J.7
Huang, J.8
Zhang, Q.9
-
39
-
-
74549172244
-
3 Cathode Materials for Lithium-ion Batteries
-
3 Cathode Materials for Lithium-ion Batteries Electrochim. Acta 2010, 55, 1575-1581 10.1016/j.electacta.2009.10.028
-
(2010)
Electrochim. Acta
, vol.55
, pp. 1575-1581
-
-
Kuang, Q.1
Zhao, Y.2
An, X.3
Liu, J.4
Dong, Y.5
Chen, L.6
-
40
-
-
84881432894
-
3/C Composite as High Rate Lithium Ion Battery Cathode Material and its Compatibility with Ionic Liquid Electrolytes
-
3/C Composite as High Rate Lithium Ion Battery Cathode Material and its Compatibility with Ionic Liquid Electrolytes J. Power Sources 2014, 246, 124-131 10.1016/j.jpowsour.2013.07.055
-
(2014)
J. Power Sources
, vol.246
, pp. 124-131
-
-
Xu, J.1
Chou, S.L.2
Zhou, C.3
Gu, Q.F.4
Liu, H.K.5
Dou, S.X.6
-
41
-
-
84922794860
-
8 Nanorod-assembled Nanosheets as a High Performance Cathode Material for Lithium Ion Batteries
-
8 Nanorod-assembled Nanosheets as a High Performance Cathode Material for Lithium Ion Batteries J. Mater. Chem. A 2015, 3, 3547-3558 10.1039/C4TA05616G
-
(2015)
J. Mater. Chem. A
, vol.3
, pp. 3547-3558
-
-
Song, H.1
Liu, Y.2
Zhang, C.3
Liu, C.4
Cao, G.5
-
42
-
-
77957591590
-
4 Nanocomposite Cathode for Lithium Batteries
-
4 Nanocomposite Cathode for Lithium Batteries Adv. Funct. Mater. 2010, 20, 3260-3265 10.1002/adfm.201000469
-
(2010)
Adv. Funct. Mater.
, vol.20
, pp. 3260-3265
-
-
Oh, S.-M.1
Oh, S.-W.2
Yoon, C.-S.3
Scrosati, B.4
Amine, K.5
Sun, Y.-K.6
-
43
-
-
85003638065
-
Efficient Charging of Li-Ion Batteries with Pulsed Output Current of Triboelectric Nanogenerators
-
Pu, X.; Liu, M.; Li, L.; Zhang, C.; Pang, Y.; Jiang, C.; Shao, L.; Hu, W.; Wang, Z. L. Efficient Charging of Li-Ion Batteries with Pulsed Output Current of Triboelectric Nanogenerators Adv. Sci. 2015, 48, 1500255-1500261 10.1002/advs.201500255
-
(2015)
Adv. Sci.
, vol.48
, pp. 1500255-1500261
-
-
Pu, X.1
Liu, M.2
Li, L.3
Zhang, C.4
Pang, Y.5
Jiang, C.6
Shao, L.7
Hu, W.8
Wang, Z.L.9
-
44
-
-
84937022699
-
4 as a Cathode Material for High-Energy Li-Ion Batteries
-
4 as a Cathode Material for High-Energy Li-Ion Batteries Adv. Energy Mater. 2015, 5, 1500440-1500446 10.1002/aenm.201500440
-
(2015)
Adv. Energy Mater.
, vol.5
, pp. 1500440-1500446
-
-
Jeong, M.1
Lee, M.J.2
Cho, J.3
Lee, S.4
-
45
-
-
84921326806
-
4 Microellipsoids as High-performance Cathode Materials for Li-ion Batteries
-
4 Microellipsoids as High-performance Cathode Materials for Li-ion Batteries J. Power Sources 2015, 278, 370-374 10.1016/j.jpowsour.2014.11.143
-
(2015)
J. Power Sources
, vol.278
, pp. 370-374
-
-
Deng, J.1
Pan, J.2
Yao, Q.3
Wang, Z.4
Zhou, H.5
Rao, G.6
|