메뉴 건너뛰기




Volumn 80, Issue , 2016, Pages 181-187

Prediction of water holdup in vertical and inclined oil-water two-phase flow using artificial neural network

Author keywords

Artificial neural network; Inclined pipe; Oil water flow; Water holdup

Indexed keywords

BACKPROPAGATION; FLOW OF WATER; FLOW PATTERNS; FORECASTING; NEURAL NETWORKS; PIPE FLOW;

EID: 84954315090     PISSN: 03019322     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.ijmultiphaseflow.2015.12.010     Document Type: Article
Times cited : (75)

References (49)
  • 1
    • 33745802429 scopus 로고    scopus 로고
    • Analysis of oil-water-flow tests in horizontal, hilly-terrain and vertical pipes
    • Abdovayt P., Manabe R., Watanabe T., Arihara N. Analysis of oil-water-flow tests in horizontal, hilly-terrain and vertical pipes. SPE Prod. Oper. 2006, 21:123-133.
    • (2006) SPE Prod. Oper. , vol.21 , pp. 123-133
    • Abdovayt, P.1    Manabe, R.2    Watanabe, T.3    Arihara, N.4
  • 2
    • 0039132625 scopus 로고    scopus 로고
    • Determination of void fraction and flow regime using a neural network trained on simulated data based on gamma-ray densitometry
    • Abro E., Khoryakov V.A., Johansen G.A., Kochach L. Determination of void fraction and flow regime using a neural network trained on simulated data based on gamma-ray densitometry. Meas. Sci. Technol. 1999, 10:619-630.
    • (1999) Meas. Sci. Technol. , vol.10 , pp. 619-630
    • Abro, E.1    Khoryakov, V.A.2    Johansen, G.A.3    Kochach, L.4
  • 4
    • 0346548418 scopus 로고    scopus 로고
    • Oil-water Flow Patterns and Pressure Gradients in Slightly Inclined Pipes
    • M. S. Thesis. The University of Tulsa, Oklahoma.
    • Alkaya, B., 2000. Oil-water Flow Patterns and Pressure Gradients in Slightly Inclined Pipes. M. S. Thesis. The University of Tulsa, Oklahoma.
    • (2000)
    • Alkaya, B.1
  • 7
    • 84887905881 scopus 로고    scopus 로고
    • Prediction of horizontal oil-water flow pressure gradient using artificial intelligence techniques
    • Al-Wahaibi T., Mjalli F.S. Prediction of horizontal oil-water flow pressure gradient using artificial intelligence techniques. Chem. Eng. Commun. 2014, 201:209-224.
    • (2014) Chem. Eng. Commun. , vol.201 , pp. 209-224
    • Al-Wahaibi, T.1    Mjalli, F.S.2
  • 8
    • 84876476207 scopus 로고    scopus 로고
    • Two-Phase Flow, Chapter 11 in An Overview of Heat Transfer Phenomena,Edited by Kazi, S. N., InTech
    • Awad, M. M., 2012, Two-Phase Flow, Chapter 11 in An Overview of Heat Transfer Phenomena,Edited by Kazi, S. N., 251-340, InTech, ISBN 978-953-51-0827-6. http://www.intechopen.com/articles/show/title/two-phase-flow.
    • (2012) , pp. 251-340
    • Awad, M.M.1
  • 9
    • 12344318181 scopus 로고    scopus 로고
    • Modeling of flux decline in crossflow microfiltration using neural networks: the case of phosphate removal
    • Aydiner C., Demir I., Yildiz E. Modeling of flux decline in crossflow microfiltration using neural networks: the case of phosphate removal. J. Membr. Sci. 2005, 248:53-62.
    • (2005) J. Membr. Sci. , vol.248 , pp. 53-62
    • Aydiner, C.1    Demir, I.2    Yildiz, E.3
  • 11
    • 0026796083 scopus 로고
    • Stability analysis of stratified liquid-liquid flow
    • Brauner N., Moalem Maron D. Stability analysis of stratified liquid-liquid flow. Int. J. Multiph. Flow 1992, 18:103-121.
    • (1992) Int. J. Multiph. Flow , vol.18 , pp. 103-121
    • Brauner, N.1    Moalem Maron, D.2
  • 12
    • 84857915080 scopus 로고    scopus 로고
    • A new void fraction correlation inferred from artificial neural networks for modeling two-phase flows in geothermal wells
    • Castillo A.Á.D., Santoyo E., Garcia-Valladare O. A new void fraction correlation inferred from artificial neural networks for modeling two-phase flows in geothermal wells. Comput. Geosci. 2012, 41:25-39.
    • (2012) Comput. Geosci. , vol.41 , pp. 25-39
    • Castillo, A.Á.D.1    Santoyo, E.2    Garcia-Valladare, O.3
  • 13
    • 0344904184 scopus 로고    scopus 로고
    • Oil-water Flow in Vertical and Deviated Wells
    • Ph.D. dissertation, University of Tulsa, Tulsa.
    • Flores, J.G., 1997. Oil-water Flow in Vertical and Deviated Wells. Ph.D. dissertation, University of Tulsa, Tulsa.
    • (1997)
    • Flores, J.G.1
  • 15
    • 0009284387 scopus 로고    scopus 로고
    • Investigation of holdup and pressure drop behavior for oil-water flow in vertical and deviated wells
    • Flores J.G., Sarica C., Chen T.X., Brill J.P. Investigation of holdup and pressure drop behavior for oil-water flow in vertical and deviated wells. ASME J. Energy Resour. Technol. 1998, 120:8-14.
    • (1998) ASME J. Energy Resour. Technol. , vol.120 , pp. 8-14
    • Flores, J.G.1    Sarica, C.2    Chen, T.X.3    Brill, J.P.4
  • 17
    • 84863124964 scopus 로고
    • A new model for two-phase oil/water flow: production log interpretation and tubular calculations
    • Hasan A.R., Kabir C.S. A new model for two-phase oil/water flow: production log interpretation and tubular calculations. SPE Prod. Eng. 1990, 51:193-199.
    • (1990) SPE Prod. Eng. , vol.51 , pp. 193-199
    • Hasan, A.R.1    Kabir, C.S.2
  • 18
    • 0033079682 scopus 로고    scopus 로고
    • A simplified model for oil/water flow in vertical and deviated wellbores
    • Hasan A.R., Kabir C.S. A simplified model for oil/water flow in vertical and deviated wellbores. SPE Prod. Facil. 1999, 14:56-62.
    • (1999) SPE Prod. Facil. , vol.14 , pp. 56-62
    • Hasan, A.R.1    Kabir, C.S.2
  • 19
  • 20
    • 34547120703 scopus 로고    scopus 로고
    • An analysis of pressure drop and holdup for liquid-liquid upflow through vertical pipes
    • Jana A.K., Ghoshal P., Das G., Das P.K. An analysis of pressure drop and holdup for liquid-liquid upflow through vertical pipes. Chem. Eng. Technol. 2007, 30:920-925.
    • (2007) Chem. Eng. Technol. , vol.30 , pp. 920-925
    • Jana, A.K.1    Ghoshal, P.2    Das, G.3    Das, P.K.4
  • 21
    • 44149097594 scopus 로고    scopus 로고
    • Application of artificial neural networks to predict chemical desulfurization of Tabas coal
    • Jorjani E., Chehreh C.S., Mesroghli S.H. Application of artificial neural networks to predict chemical desulfurization of Tabas coal. Fuel 2008, 87:2727-3273.
    • (2008) Fuel , vol.87 , pp. 2727-3273
    • Jorjani, E.1    Chehreh, C.S.2    Mesroghli, S.H.3
  • 22
    • 38649086721 scopus 로고    scopus 로고
    • Evaluation of membrane fouling models based on bench-scale experiments: a comparison between constant flowrate blocking laws and artificial neural network (ANNs) model
    • Liu Q, Kim S.H. Evaluation of membrane fouling models based on bench-scale experiments: a comparison between constant flowrate blocking laws and artificial neural network (ANNs) model. J. Membr. Sci. 2008, 310:393-401.
    • (2008) J. Membr. Sci. , vol.310 , pp. 393-401
    • Liu, Q.1    Kim, S.H.2
  • 23
    • 0037908845 scopus 로고    scopus 로고
    • Neural network analysis of void fraction in air/water two-phase flows at elevated temperatures
    • Malayeri M.R., Steinhagen H.M., Smith J.M. Neural network analysis of void fraction in air/water two-phase flows at elevated temperatures. Chem. Eng. Process.: Process Intensif. 2003, 42:589-597.
    • (2003) Chem. Eng. Process.: Process Intensif. , vol.42 , pp. 589-597
    • Malayeri, M.R.1    Steinhagen, H.M.2    Smith, J.M.3
  • 25
    • 0034306841 scopus 로고    scopus 로고
    • Virtual-intelligence applications in petroleum engineering: part 2-Evolutionary computing
    • Mohaghegh S. Virtual-intelligence applications in petroleum engineering: part 2-Evolutionary computing. J. Petrol. Technol. 2001, 52:40-46.
    • (2001) J. Petrol. Technol. , vol.52 , pp. 40-46
    • Mohaghegh, S.1
  • 30
    • 1642439223 scopus 로고    scopus 로고
    • Artificial neural networks models for identifying flow regimes and predicting liquid holdup in horizontal multiphase flow
    • Paper SPE- 68219
    • Osman E.A. Artificial neural networks models for identifying flow regimes and predicting liquid holdup in horizontal multiphase flow. Proceedings of the SPE Middle East Oil and Gas Show and Conference, 17-20 March 2001, Paper SPE- 68219.
    • (2001) Proceedings of the SPE Middle East Oil and Gas Show and Conference, 17-20 March
    • Osman, E.A.1
  • 31
    • 0036183583 scopus 로고    scopus 로고
    • Artificial neural network model for accurate prediction of pressure drop in horizontal and near-horizontal-multiphase flow
    • Osman E.A., Aggour M.A. Artificial neural network model for accurate prediction of pressure drop in horizontal and near-horizontal-multiphase flow. Petrol. Sci. Technol. 2002, 20:1-15.
    • (2002) Petrol. Sci. Technol. , vol.20 , pp. 1-15
    • Osman, E.A.1    Aggour, M.A.2
  • 32
    • 0034195240 scopus 로고    scopus 로고
    • A mechanistic model for multiphase flow in pipe
    • Petalas N., Aziz K. A mechanistic model for multiphase flow in pipe. J. Can. Petrol. Technol 2000, 39:43-55.
    • (2000) J. Can. Petrol. Technol , vol.39 , pp. 43-55
    • Petalas, N.1    Aziz, K.2
  • 33
    • 23844484661 scopus 로고    scopus 로고
    • Liquid-liquid stratified flow through horizontal conduit
    • Raj T.S., Chakrabarti D.P., Das G. Liquid-liquid stratified flow through horizontal conduit. Chem. Eng. Technol. 2005, 28:899-907.
    • (2005) Chem. Eng. Technol. , vol.28 , pp. 899-907
    • Raj, T.S.1    Chakrabarti, D.P.2    Das, G.3
  • 34
    • 0043169729 scopus 로고    scopus 로고
    • Dynamic modeling of milk ultrafiltration by artificial neural network
    • Razavi M.A., Mortazavi A., Mousavi M. Dynamic modeling of milk ultrafiltration by artificial neural network. J. Membr. Sci. 2003, 220:47-58.
    • (2003) J. Membr. Sci. , vol.220 , pp. 47-58
    • Razavi, M.A.1    Mortazavi, A.2    Mousavi, M.3
  • 35
    • 84864293524 scopus 로고    scopus 로고
    • Investigation of artificial neural network methodology for modeling of a liquid-solid circulating fluidized bed riser
    • Razzak S.A., Rahman S.M., Hossain M.M., Zhu J. Investigation of artificial neural network methodology for modeling of a liquid-solid circulating fluidized bed riser. Powder Technol. 2012, 229:71-77.
    • (2012) Powder Technol. , vol.229 , pp. 71-77
    • Razzak, S.A.1    Rahman, S.M.2    Hossain, M.M.3    Zhu, J.4
  • 36
    • 77954761845 scopus 로고    scopus 로고
    • Performance comparison of artificial neural networks and expert systems applied to flow pattern identification in vertical ascendant gas-liquid flows
    • Rosa E.S., Salgado R.M., Ohishi T., Mastelari N. Performance comparison of artificial neural networks and expert systems applied to flow pattern identification in vertical ascendant gas-liquid flows. Int. J. Multiph. Flow 2010, 36:738-754.
    • (2010) Int. J. Multiph. Flow , vol.36 , pp. 738-754
    • Rosa, E.S.1    Salgado, R.M.2    Ohishi, T.3    Mastelari, N.4
  • 37
    • 0037221814 scopus 로고    scopus 로고
    • Explicit calculation of the friction factor in pipeline flow of Bingham plastic fluids: a neural network approach
    • Sablani S.S., Shayyab W.H., Kacimovc A. Explicit calculation of the friction factor in pipeline flow of Bingham plastic fluids: a neural network approach. Chem. Eng. Sci. 2003, 58:99-106.
    • (2003) Chem. Eng. Sci. , vol.58 , pp. 99-106
    • Sablani, S.S.1    Shayyab, W.H.2    Kacimovc, A.3
  • 40
    • 84866763128 scopus 로고    scopus 로고
    • Artificial neural networks in liquid-liquid two-phase flow
    • Shirley R., Chakrabarti D.P., Das G. Artificial neural networks in liquid-liquid two-phase flow. Chem. Eng. Commun. 2012, 199:1520-1542.
    • (2012) Chem. Eng. Commun. , vol.199 , pp. 1520-1542
    • Shirley, R.1    Chakrabarti, D.P.2    Das, G.3
  • 41
    • 84924943838 scopus 로고    scopus 로고
    • Prediction of two-phase heat transfer coefficients in a horizontal pipe for different inclined positions with artificial neural networks
    • Article No. (061009)
    • Sobhanifar N., Ahmadloo E., Azizi S. Prediction of two-phase heat transfer coefficients in a horizontal pipe for different inclined positions with artificial neural networks. ASME J. Heat Transf. 2015, 137. Article No. (061009).
    • (2015) ASME J. Heat Transf. , vol.137
    • Sobhanifar, N.1    Ahmadloo, E.2    Azizi, S.3
  • 42
    • 38849138663 scopus 로고    scopus 로고
    • Neural networks approach for prediction of gas-liquid two-phase flow pattern based on frequency domain analysis of vortex flow meter signals
    • Article No. (015401)
    • Sun Z., Zhang H. Neural networks approach for prediction of gas-liquid two-phase flow pattern based on frequency domain analysis of vortex flow meter signals. Meas. Sci. Technol. 2008, 19. Article No. (015401).
    • (2008) Meas. Sci. Technol. , vol.19
    • Sun, Z.1    Zhang, H.2
  • 43
    • 0018972170 scopus 로고
    • A generally valid method for calculating frictional pressure drop in multiphase flow
    • Theissing P.A. A generally valid method for calculating frictional pressure drop in multiphase flow. Chemie Ingenieur Technik 1980, 52:344-345.
    • (1980) Chemie Ingenieur Technik , vol.52 , pp. 344-345
    • Theissing, P.A.1
  • 44
    • 84865779534 scopus 로고    scopus 로고
    • Modeling of Oil-water Flow in Horizontal and Near Horizontal Pipes
    • PhD Thesis, The University of Tulsa, Oklahoma.
    • Torres-Monzón, C.F., 2006. Modeling of Oil-water Flow in Horizontal and Near Horizontal Pipes. PhD Thesis, The University of Tulsa, Oklahoma.
    • (2006)
    • Torres-Monzón, C.F.1
  • 45
    • 0003821409 scopus 로고
    • Oil-water Flow Patterns in Horizontal Pipes
    • PhD Thesis, The University of Tulsa, Oklahoma.
    • Trallero, J.L., 1995. Oil-water Flow Patterns in Horizontal Pipes, PhD Thesis, The University of Tulsa, Oklahoma.
    • (1995)
    • Trallero, J.L.1
  • 46
    • 0037836630 scopus 로고    scopus 로고
    • Studies on Oil-water Flow in Inclined Pipelines
    • M.Sc. Thesis, Ohio University, Ohio.
    • Vedapuri, D., 1999. Studies on Oil-water Flow in Inclined Pipelines. M.Sc. Thesis, Ohio University, Ohio.
    • (1999)
    • Vedapuri, D.1
  • 47
    • 0024010166 scopus 로고
    • Liquid-liquid flows in an inclined pipe
    • Vigneaux P., Chenais P., Hulin J.P. Liquid-liquid flows in an inclined pipe. AIChE J. 1988, 34:781-789.
    • (1988) AIChE J. , vol.34 , pp. 781-789
    • Vigneaux, P.1    Chenais, P.2    Hulin, J.P.3
  • 48
    • 84857924220 scopus 로고    scopus 로고
    • Forecasting with artificial neural networks: to optimum bit selection
    • Zhang G., Patuwo B.E., Hu M.Y. Forecasting with artificial neural networks: to optimum bit selection. Comput. Geosci. 2002, 28:131-141.
    • (2002) Comput. Geosci. , vol.28 , pp. 131-141
    • Zhang, G.1    Patuwo, B.E.2    Hu, M.Y.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.