메뉴 건너뛰기




Volumn 199, Issue 12, 2012, Pages 1520-1542

ARTIFICIAL NEURAL NETWORKS IN LIQUID-LIQUID TWO-PHASE FLOW

Author keywords

Artificial neural network; Horizontal pipe; Liquid liquid flow; Mean square error; Probabilistic neural network

Indexed keywords

COMPUTATIONAL TOOLS; CONSTRUCTION TIME; FEED-FORWARD BACK PROPAGATION; HORIZONTAL CONDUITS; HORIZONTAL PIPES; KEY VARIABLES; LEARNING VECTOR QUANTIZATION NETWORKS; LIQUID-LIQUID FLOW; LIQUID-LIQUID TWO-PHASE FLOW; OIL-WATER TWO-PHASE FLOW; OVERFITTING; PROBABILISTIC NEURAL NETWORKS; RADIAL BASED FUNCTION; TRAINING DATA; TRANSITION REGIONS;

EID: 84866763128     PISSN: 00986445     EISSN: 15635201     Source Type: Journal    
DOI: 10.1080/00986445.2012.682323     Document Type: Article
Times cited : (16)

References (56)
  • 1
    • 0001578518 scopus 로고
    • A learning algorithm for Boltzmann machines
    • Ackley, D. H., Hinton, G. E., and Sejnowski, T. J. (1985). A learning algorithm for Boltzmann machines, Cogn. Sci., 9, 147-169.
    • (1985) Cogn. Sci. , vol.9 , pp. 147-169
    • Ackley, D.H.1    Hinton, G.E.2    Sejnowski, T.J.3
  • 3
    • 0001915721 scopus 로고
    • Statistical neurodynamics of associative memory
    • Amari, S., and Maginu, K. (1988). Statistical neurodynamics of associative memory, Neural Netw., 1, 63-74.
    • (1988) Neural Netw. , vol.1 , pp. 63-74
    • Amari, S.1    Maginu, K.2
  • 4
    • 84866750085 scopus 로고    scopus 로고
    • Neural networks and its application in engineering, in Proceedings of Informing Science and IT Education Conference, (InSITE) 2009, Informing Science Institute, Santa Rosa, Calif., (accessed February 18, 2010)
    • Awodele, O., and Jegede, O. (2009). Neural networks and its application in engineering, in Proceedings of Informing Science and IT Education Conference, (InSITE) 2009, Informing Science Institute, Santa Rosa, Calif., http://proceedings.informingscience.org/InSITE2009/InSITE09p083-095Awodele542.pdf (accessed February 18, 2010),
    • (2009)
    • Awodele, O.1    Jegede, O.2
  • 5
    • 0346238931 scopus 로고    scopus 로고
    • Task clustering and gating for Bayesian multitask learning
    • Bakker, B., and Heskes, T. (2003). Task clustering and gating for Bayesian multitask learning, J. Mach. Learn. Res., 4, 83-99.
    • (2003) J. Mach. Learn. Res. , vol.4 , pp. 83-99
    • Bakker, B.1    Heskes, T.2
  • 6
    • 0036627726 scopus 로고    scopus 로고
    • Prediction of gas-phase adsorption isotherms using neural nets
    • Basu, S., Henshaw, P. F., Biswas, N., and Kwan, H. K. (2002). Prediction of gas-phase adsorption isotherms using neural nets, Can. J. Chem. Eng., 80, 506-512.
    • (2002) Can. J. Chem. Eng. , vol.80 , pp. 506-512
    • Basu, S.1    Henshaw, P.F.2    Biswas, N.3    Kwan, H.K.4
  • 8
    • 84866774157 scopus 로고    scopus 로고
    • The WISARD architecture, wisard.htm (accessed February 2, 2010)
    • Bowles, R. (2010). The WISARD architecture, http://richardbowles.tripod.com/neural/wisard/ wisard.htm (accessed February 2, 2010).
    • (2010)
    • Bowles, R.1
  • 9
    • 0026188751 scopus 로고
    • Learning vector quantization for the probabilistic neural network
    • Burrascano, P. (1991). Learning vector quantization for the probabilistic neural network, IEEE Trans. Neural Netw., 2, 458-461.
    • (1991) IEEE Trans. Neural Netw. , vol.2 , pp. 458-461
    • Burrascano, P.1
  • 10
    • 0031189914 scopus 로고    scopus 로고
    • Multitask learning
    • Caruana, R. (1997). Multitask learning, Mach. Learn., 28, 41-75.
    • (1997) Mach. Learn. , vol.28 , pp. 41-75
    • Caruana, R.1
  • 11
    • 84857915080 scopus 로고    scopus 로고
    • α new void fraction correlation inferred from artificial neural networks for modeling two-phase flows in geothermal wells
    • Castillo, A. Á. del, Santoyo, E., and García-Valladares, O. (2012). α new void fraction correlation inferred from artificial neural networks for modeling two-phase flows in geothermal wells, Comput. Geosci., 41, 25-39.
    • (2012) Comput. Geosci. , vol.41 , pp. 25-39
    • Castillo A.Á.del1    Santoyo, E.2    García-Valladares, O.3
  • 12
    • 24944507136 scopus 로고    scopus 로고
    • Pressure drop in liquid-liquid two phase horizontal flow: Experiment and prediction
    • Chakrabarti, D. P., Das, G., and Ray, S. (2005). Pressure drop in liquid-liquid two phase horizontal flow: Experiment and prediction, Chem. Eng. Technol., 28, 1003-1009.
    • (2005) Chem. Eng. Technol. , vol.28 , pp. 1003-1009
    • Chakrabarti, D.P.1    Das, G.2    Ray, S.3
  • 14
    • 33750571421 scopus 로고    scopus 로고
    • The transition from water continuous to oil continuous flow pattern
    • Chakrabarti, D. P., Das, G., and Das, P. K. (2006b). The transition from water continuous to oil continuous flow pattern, AIChE J., 52, 3668-3678.
    • (2006) AIChE J. , vol.52 , pp. 3668-3678
    • Chakrabarti, D.P.1    Das, G.2    Das, P.K.3
  • 15
    • 33847146716 scopus 로고    scopus 로고
    • Identification of stratified liquid-liquid flow through horizontal pipes by a non-intrusive optical probe
    • Chakrabarti, D. P., Das, G., and Das, P. K. (2007). Identification of stratified liquid-liquid flow through horizontal pipes by a non-intrusive optical probe, Chem. Eng. Sci., 62, 1861-1876.
    • (2007) Chem. Eng. Sci. , vol.62 , pp. 1861-1876
    • Chakrabarti, D.P.1    Das, G.2    Das, P.K.3
  • 16
    • 84956230802 scopus 로고
    • Saturation level of the Hopfield model for neural network
    • Cristianti, A., Amit, D. J., and Gutfreund, H. (1986). Saturation level of the Hopfield model for neural network, Europhys. Lett., 2 (4), 337-341.
    • (1986) Europhys. Lett. , vol.2 , Issue.4 , pp. 337-341
    • Cristianti, A.1    Amit, D.J.2    Gutfreund, H.3
  • 17
    • 84866750087 scopus 로고    scopus 로고
    • Perceptrons: An Associative Learning Network, Virginia Tech Computer Science Department, (accessed February 20, 2010)
    • Estebon, M. D. (1997). Perceptrons: An Associative Learning Network, Virginia Tech Computer Science Department, http://ei.cs.vt.edu/~history/Perceptrons.Estebon.html (accessed February 20, 2010).
    • (1997)
    • Estebon, M.D.1
  • 19
    • 0028416331 scopus 로고
    • Neural networks in civil engineering. I: Principles and understanding
    • Flood, I., and Kartam, N. (1994). Neural networks in civil engineering. I: Principles and understanding, J. Comput. Civil Eng., 8, 131-148.
    • (1994) J. Comput. Civil Eng. , vol.8 , pp. 131-148
    • Flood, I.1    Kartam, N.2
  • 21
    • 0031254760 scopus 로고    scopus 로고
    • An optical probe for measurement in liquid-liquid two-phase flow
    • Hammad, F. A., Imberton, F., and Brunn, H. H. (1997). An optical probe for measurement in liquid-liquid two-phase flow, Meas. Sci. Technol., 8, 1122-1132.
    • (1997) Meas. Sci. Technol. , vol.8 , pp. 1122-1132
    • Hammad, F.A.1    Imberton, F.2    Brunn, H.H.3
  • 22
    • 84866772448 scopus 로고    scopus 로고
    • A Comparison of Three Neural Network Architectures for Automatic Speech Recognition, Department of Electrical and Computer Engineering, Old Dominion University, Norfolk, Va
    • Hawickhorst, B. A., Zahorian, S. A., and Rajagopal, R. (2006). A Comparison of Three Neural Network Architectures for Automatic Speech Recognition, Department of Electrical and Computer Engineering, Old Dominion University, Norfolk, Va.
    • (2006)
    • Hawickhorst, B.A.1    Zahorian, S.A.2    Rajagopal, R.3
  • 24
    • 34548770219 scopus 로고    scopus 로고
    • Two-phase flow regime identification combining conductivity probe signals and artificial neural network, in Multiphase Flow: The Ultimate Measurement Challenge, AIP Conference Proceedings no. 914, 307-312, American Institute of Physics, Melville, N.Y
    • Hernández, L., Juliá, J. E., Chiva, S., Paranjape, S., and Ishii, M. (2007). Two-phase flow regime identification combining conductivity probe signals and artificial neural network, in Multiphase Flow: The Ultimate Measurement Challenge, AIP Conference Proceedings no. 914, 307-312, American Institute of Physics, Melville, N.Y.
    • (2007)
    • Hernández, L.1    Juliá, J.E.2    Chiva, S.3    Paranjape, S.4    Ishii, M.5
  • 25
    • 18844467867 scopus 로고
    • Learning in parallel networks
    • (April)
    • Hinton, G. E. (1985). Learning in parallel networks, Byte, 10 (April), 265-271.
    • (1985) Byte , vol.10 , pp. 265-271
    • Hinton, G.E.1
  • 26
    • 84866774159 scopus 로고    scopus 로고
    • Assessment of Neural Network Schemes to Classify Cloud Data, University of Connecticut
    • Houssain, F., Dinku, T., Agarwal, N., and Anagnostou, E. N. (2003). Assessment of Neural Network Schemes to Classify Cloud Data, University of Connecticut.
    • (2003)
    • Houssain, F.1    Dinku, T.2    Agarwal, N.3    Anagnostou, E.N.4
  • 27
    • 8344251179 scopus 로고    scopus 로고
    • Tomographic identification of gas bubbles in two-phase flows with the combined use of the algebraic reconstruction technique and the genetic algorithm
    • Kihm, K. D., Ko, H. S., and Lyons, D. P. (1998). Tomographic identification of gas bubbles in two-phase flows with the combined use of the algebraic reconstruction technique and the genetic algorithm, Opt. Lett., 23, 658-660.
    • (1998) Opt. Lett. , vol.23 , pp. 658-660
    • Kihm, K.D.1    Ko, H.S.2    Lyons, D.P.3
  • 28
    • 0023331258 scopus 로고
    • An introduction to computing with neural nets
    • Lippmann, R. P. (1987). An introduction to computing with neural nets, IEEE ASSP Mag., 4 (2), 4-22.
    • (1987) IEEE ASSP Mag. , vol.4 , Issue.2 , pp. 4-22
    • Lippmann, R.P.1
  • 29
    • 0034227864 scopus 로고    scopus 로고
    • Probabilistic neural-network structure determination for pattern classification
    • Mao, K. Z., Tan, K. C., and Ser, W. (2000). Probabilistic neural-network structure determination for pattern classification, IEEE Trans. Neural Netw., 11, 1009-1016.
    • (2000) IEEE Trans. Neural Netw. , vol.11 , pp. 1009-1016
    • Mao, K.Z.1    Tan, K.C.2    Ser, W.3
  • 32
    • 0032558883 scopus 로고    scopus 로고
    • Application of artificial neural network and genetic algorithm in flow and transport simulations
    • Morshed, J., and Kaluarachchi, J. J. (1998). Application of artificial neural network and genetic algorithm in flow and transport simulations, Adv. Water Resour., 22, 145-158.
    • (1998) Adv. Water Resour. , vol.22 , pp. 145-158
    • Morshed, J.1    Kaluarachchi, J.J.2
  • 33
    • 64549145035 scopus 로고    scopus 로고
    • Estimation of pressure drop in venturi scrubbers based on annular two-phase flow model, artificial neural networks and genetic algorithm
    • Nasseh, S., Mohebbi, A., Sarrafi, A., and Taheri, M. (2009). Estimation of pressure drop in venturi scrubbers based on annular two-phase flow model, artificial neural networks and genetic algorithm, Chem. Eng. J., 150, 131-138.
    • (2009) Chem. Eng. J. , vol.150 , pp. 131-138
    • Nasseh, S.1    Mohebbi, A.2    Sarrafi, A.3    Taheri, M.4
  • 36
    • 23844484661 scopus 로고    scopus 로고
    • Liquid-liquid stratified flow through horizontal conduit
    • Raj, T. S., Chakrabarti, D. P., and Das, G. (2005). Liquid-liquid stratified flow through horizontal conduit, Chem. Eng. Technol., 28, 899-907.
    • (2005) Chem. Eng. Technol. , vol.28 , pp. 899-907
    • Raj, T.S.1    Chakrabarti, D.P.2    Das, G.3
  • 39
    • 33847721039 scopus 로고    scopus 로고
    • A specialized genetic algorithm for the electrical impedance tomography of two-phase flows
    • Rolnik, V. P., and Seleghim, P. Jr., (2006). A specialized genetic algorithm for the electrical impedance tomography of two-phase flows, J. Braz. Soc. Mech. Sci. Eng., 4, 378-389.
    • (2006) J. Braz. Soc. Mech. Sci. Eng. , vol.4 , pp. 378-389
    • Rolnik, V.P.1    Seleghim Jr., P.2
  • 40
    • 77954761845 scopus 로고    scopus 로고
    • Performance comparison of artificial neural networks and expert systems applied to flow pattern identification in vertical ascendant gas-liquid flows
    • Rosa, E. S., Salgado, R. M., Ohishi, T., and Mastelari, N. (2010). Performance comparison of artificial neural networks and expert systems applied to flow pattern identification in vertical ascendant gas-liquid flows, Int. J. Multiph. Flow, 36, 738-754.
    • (2010) Int. J. Multiph. Flow , vol.36 , pp. 738-754
    • Rosa, E.S.1    Salgado, R.M.2    Ohishi, T.3    Mastelari, N.4
  • 41
    • 69249223215 scopus 로고    scopus 로고
    • Prediction of volume fractions in three-phase flows using nuclear technique and artificial neural network
    • Salgado, C. M., Brandão, L. E. B., Schirru, R., Pereira, C. M. N. A., da Silva, A. X., and Ramos, R. (2009). Prediction of volume fractions in three-phase flows using nuclear technique and artificial neural network, Appl. Radiat. Isotopes, 67, 1812-1818.
    • (2009) Appl. Radiat. Isotopes , vol.67 , pp. 1812-1818
    • Salgado, C.M.1    Brandão, L.E.B.2    Schirru, R.3    Pereira, C.M.N.A.4    da Silva, A.X.5    Ramos, R.6
  • 42
    • 77953324310 scopus 로고    scopus 로고
    • Flow regime identification and volume fraction prediction in multiphase flows by means of gamma-ray attenuation and artificial neural networks
    • Salgado, C. M., Pereira, C. M. N. A., Schirru, R., and Brandão, L. E. B. (2010). Flow regime identification and volume fraction prediction in multiphase flows by means of gamma-ray attenuation and artificial neural networks, Prog. Nucl. Energy, 52, 555-562.
    • (2010) Prog. Nucl. Energy , vol.52 , pp. 555-562
    • Salgado, C.M.1    Pereira, C.M.N.A.2    Schirru, R.3    Brandão, L.E.B.4
  • 43
    • 33646428348 scopus 로고    scopus 로고
    • Modeling flow boiling heat transfer of pure fluids through artificial neural networks
    • Scalabrin, G., Condosta, M., and Marchi, P. (2006). Modeling flow boiling heat transfer of pure fluids through artificial neural networks, Int. J. Therm. Sci., 45, 643-663.
    • (2006) Int. J. Therm. Sci. , vol.45 , pp. 643-663
    • Scalabrin, G.1    Condosta, M.2    Marchi, P.3
  • 44
    • 84930208606 scopus 로고    scopus 로고
    • Artificial neural network applications in geotechnical engineering
    • Shahin, M., Jaksa, M. B., and Maier, H. R. (2001). Artificial neural network applications in geotechnical engineering, Aust. Geomech., 36, 49-62.
    • (2001) Aust. Geomech. , vol.36 , pp. 49-62
    • Shahin, M.1    Jaksa, M.B.2    Maier, H.R.3
  • 45
    • 20144367114 scopus 로고    scopus 로고
    • Application of artificial intelligence CFD based on neural network in vapor-water two-phase flow
    • Shang, Z. (2005). Application of artificial intelligence CFD based on neural network in vapor-water two-phase flow, Eng. Appl. Artif. Intell., 18, 663-671.
    • (2005) Eng. Appl. Artif. Intell. , vol.18 , pp. 663-671
    • Shang, Z.1
  • 46
    • 33748542014 scopus 로고    scopus 로고
    • ANN based prediction of two phase gas-liquid flow patterns in a circular conduit
    • Sharma, H., Das, G., and Smanta, A. N. (2006). ANN based prediction of two phase gas-liquid flow patterns in a circular conduit, AIChE J., 52, 3018-3028.
    • (2006) AIChE J. , vol.52 , pp. 3018-3028
    • Sharma, H.1    Das, G.2    Smanta, A.N.3
  • 47
    • 0037199712 scopus 로고    scopus 로고
    • River flow forecasting: Use of phase-space reconstruction and artificial neural networks approaches
    • Sivakumar, B., Jayawardena, A. W., and Fernando, T. M. K. G. (2002). River flow forecasting: Use of phase-space reconstruction and artificial neural networks approaches, J. Hydrol., 265, 225-245.
    • (2002) J. Hydrol. , vol.265 , pp. 225-245
    • Sivakumar, B.1    Jayawardena, A.W.2    Fernando, T.M.K.G.3
  • 48
    • 0025206332 scopus 로고
    • Probabilistic neural networks
    • Specht, D. F. (1990). Probabilistic neural networks, Neural Netw., 3, 109-118.
    • (1990) Neural Netw. , vol.3 , pp. 109-118
    • Specht, D.F.1
  • 49
    • 0028497290 scopus 로고
    • Maximum likelihood training of probabilistic neural network
    • Streit, R. L., and Luginbuhl, T. E. (1994). Maximum likelihood training of probabilistic neural network, IEEE Trans. Neural Netw., 5, 764-783.
    • (1994) IEEE Trans. Neural Netw. , vol.5 , pp. 764-783
    • Streit, R.L.1    Luginbuhl, T.E.2
  • 51
    • 62649143675 scopus 로고    scopus 로고
    • Non-invasive on-line two-phase flow regime identification employing artificial neural networks
    • Tambouratzis, T., and Pázsit, I. (2009). Non-invasive on-line two-phase flow regime identification employing artificial neural networks, Ann. Nucl. Energy, 36, 464-469.
    • (2009) Ann. Nucl. Energy , vol.36 , pp. 464-469
    • Tambouratzis, T.1    Pázsit, I.2
  • 52
    • 34447269446 scopus 로고    scopus 로고
    • Voidage measurement of gas-oil two-phase flow
    • Wang, W. (2007). Voidage measurement of gas-oil two-phase flow, Chin. J. Chem. Eng., 15, 339-344.
    • (2007) Chin. J. Chem. Eng. , vol.15 , pp. 339-344
    • Wang, W.1
  • 53
    • 77953143252 scopus 로고    scopus 로고
    • Genetic algorithm and machine learning based void fraction measurement of two-phase flow, in 2010 International Conference on Measuring Technology and Mechatronics Automation, 13-14 March 2010, Changsha City, China, vol. 2, 355-358, IEEE Xplore, New York, USA
    • Wang, W., Zhu, X., Wang, P., Fan, S., and Ren, D. (2010). Genetic algorithm and machine learning based void fraction measurement of two-phase flow, in 2010 International Conference on Measuring Technology and Mechatronics Automation, 13-14 March 2010, Changsha City, China, vol. 2, 355-358, IEEE Xplore, New York, USA.
    • (2010)
    • Wang, W.1    Zhu, X.2    Wang, P.3    Fan, S.4    Ren, D.5
  • 54
    • 2542419872 scopus 로고    scopus 로고
    • Artificial neural network approach for flow regime classification in gas-liquid-fiber flows based on frequency domain analysis of pressure signals
    • Xie, T., Ghiaasiaan, S. M., and Karrila, S. (2004). Artificial neural network approach for flow regime classification in gas-liquid-fiber flows based on frequency domain analysis of pressure signals, Chem. Eng. Sci., 59, 2241-2251.
    • (2004) Chem. Eng. Sci. , vol.59 , pp. 2241-2251
    • Xie, T.1    Ghiaasiaan, S.M.2    Karrila, S.3
  • 56
    • 37749047132 scopus 로고    scopus 로고
    • Measurement for water content in oil-water two phase flow based on novel hybrid intelligent prediction model, in: Proceedings of the 26th Chinese Control Conference July 26-31, 2007, Zhangjiajie, Hunan, China, 367-371, IEEE, Piscataway, N.J.
    • Zhang, D., Xia, B., and Fu, T. (2007). Measurement for water content in oil-water two phase flow based on novel hybrid intelligent prediction model, in: Proceedings of the 26th Chinese Control Conference July 26-31, 2007, Zhangjiajie, Hunan, China, 367-371, IEEE, Piscataway, N.J.
    • (2007)
    • Zhang, D.1    Xia, B.2    Fu, T.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.