메뉴 건너뛰기




Volumn 37, Issue 15, 2016, Pages 3439-3454

Seasonal multitemporal land-cover classification and change detection analysis of Bochum, Germany, using multitemporal Landsat TM data

Author keywords

[No Author keywords available]

Indexed keywords

MAPPING; MAXIMUM LIKELIHOOD;

EID: 84954290174     PISSN: 01431161     EISSN: 13665901     Source Type: Journal    
DOI: 10.1080/01431161.2015.1125558     Document Type: Article
Times cited : (38)

References (34)
  • 1
    • 72949088834 scopus 로고    scopus 로고
    • Automatic Change Detection of Buildings in Urban Environment from Very High Spatial Resolution Images Using Existing Geodatabase and Prior Knowledge
    • M.Bouziani,, K.Goïta, and D.-C.He. 2010. “Automatic Change Detection of Buildings in Urban Environment from Very High Spatial Resolution Images Using Existing Geodatabase and Prior Knowledge.” ISPRS Journal of Photogrammetry and Remote Sensing 65 (1): 143–153. doi:10.1016/j.isprsjprs.2009.10.002.
    • (2010) ISPRS Journal of Photogrammetry and Remote Sensing , vol.65 , Issue.1 , pp. 143-153
    • Bouziani, M.1    Goïta, K.2    He, D.-C.3
  • 3
    • 84862227138 scopus 로고    scopus 로고
    • An Automated Approach for Updating Land Cover Maps Based on Integrated Change Detection and Classification Methods
    • X.Chen,, J.Chen, Y.Shi, and Y.Yamaguchi. 2012. “An Automated Approach for Updating Land Cover Maps Based on Integrated Change Detection and Classification Methods.” ISPRS Journal of Photogrammetry and Remote Sensing 71: 86–95. doi:10.1016/j.isprsjprs.2012.05.006.
    • (2012) ISPRS Journal of Photogrammetry and Remote Sensing , vol.71 , pp. 86-95
    • Chen, X.1    Chen, J.2    Shi, Y.3    Yamaguchi, Y.4
  • 4
    • 0026278621 scopus 로고
    • A Review of Assessing the Accuracy of Classifications of Remotely Sensed Data
    • R.G.Congalton, 1991. “A Review of Assessing the Accuracy of Classifications of Remotely Sensed Data.” Remote Sensing of Environment 37 (1): 35–46. doi:10.1016/0034-4257(91)90048-B.
    • (1991) Remote Sensing of Environment , vol.37 , Issue.1 , pp. 35-46
    • Congalton, R.G.1
  • 5
    • 77952100427 scopus 로고    scopus 로고
    • Assessing Changes in Forest Fragmentation following Infestation Using Time Series Landsat Imagery
    • N.C.Coops,, S.N.Gillanders, M.A.Wulder, S.E.Gergel, T.Nelson, and N.R.Goodwin. 2010. “Assessing Changes in Forest Fragmentation following Infestation Using Time Series Landsat Imagery.” Forest Ecology and Management 259 (12): 2355–2365. doi:10.1016/j.foreco.2010.03.008.
    • (2010) Forest Ecology and Management , vol.259 , Issue.12 , pp. 2355-2365
    • Coops, N.C.1    Gillanders, S.N.2    Wulder, M.A.3    Gergel, S.E.4    Nelson, T.5    Goodwin, N.R.6
  • 7
    • 1942439885 scopus 로고    scopus 로고
    • Comparison of Maximum Likelihood Classification Method with Supervised Artificial Neural Network Algorithms for Land Use Activities
    • F.S.Erbek,, C.Özkan, and M.Taberner. 2004. “Comparison of Maximum Likelihood Classification Method with Supervised Artificial Neural Network Algorithms for Land Use Activities.” International Journal of Remote Sensing 25 (9): 1733–1748. doi:10.1080/0143116031000150077.
    • (2004) International Journal of Remote Sensing , vol.25 , Issue.9 , pp. 1733-1748
    • Erbek, F.S.1    Özkan, C.2    Taberner, M.3
  • 8
    • 70350041108 scopus 로고    scopus 로고
    • MODIS Collection 5 Global Land Cover: Algorithm Refinements and Characterization of New Datasets
    • M.A.Friedl,, D.S.Menashe, B.Tan, A.Schneider, N.Ramankutty, and A.Sibley. 2010. “MODIS Collection 5 Global Land Cover: Algorithm Refinements and Characterization of New Datasets.” Remote Sensing of Environment 114: 168–182. doi:10.1016/j.rse.2009.08.016.
    • (2010) Remote Sensing of Environment , vol.114 , pp. 168-182
    • Friedl, M.A.1    Menashe, D.S.2    Tan, B.3    Schneider, A.4    Ramankutty, N.5    Sibley, A.6
  • 9
    • 0033080043 scopus 로고    scopus 로고
    • Fuzzy Neural Network Classification of Global Land cover from a 1° AVHRR Data Set
    • S.Gopal,, C.E.Woodcock, and A.Strahler. 1999. “Fuzzy Neural Network Classification of Global Land cover from a 1° AVHRR Data Set.” Remote Sensing of Environment 67: 230–243. doi:10.1016/S0034-4257(98)00088-1.
    • (1999) Remote Sensing of Environment , vol.67 , pp. 230-243
    • Gopal, S.1    Woodcock, C.E.2    Strahler, A.3
  • 10
    • 23744456111 scopus 로고    scopus 로고
    • Comparison of Tasseled Cap-Based Landsat Data Structure for Use in Forest Disturbance Detection
    • S.P.Healey,, W.B.Cohen, Z.Yang, and O.N.Krankina. 2005. “Comparison of Tasseled Cap-Based Landsat Data Structure for Use in Forest Disturbance Detection.” Remote Sensing of Environment 97: 301–310. doi:10.1016/j.rse.2005.05.009.
    • (2005) Remote Sensing of Environment , vol.97 , pp. 301-310
    • Healey, S.P.1    Cohen, W.B.2    Yang, Z.3    Krankina, O.N.4
  • 11
    • 84991982803 scopus 로고    scopus 로고
    • Analysis of the Connection between Urban Land Cover and Census Districts Using Geoinformatical Methods
    • L.Henits,, and L.Mucsi. 2012. “Analysis of the Connection between Urban Land Cover and Census Districts Using Geoinformatical Methods.” Acta Geographica Debrecina Landscape and Environment 6 (2): 52–67.
    • (2012) Acta Geographica Debrecina Landscape and Environment , vol.6 , Issue.2 , pp. 52-67
    • Henits, L.1    Mucsi, L.2
  • 12
    • 0037138473 scopus 로고    scopus 로고
    • An Assessment of Support Vector Machines for Land Cover Classification
    • C.Huang,, L.S.Davis, and J.R.Townshend. 2002. “An Assessment of Support Vector Machines for Land Cover Classification.” International Journal of Remote Sensing 23 (4): 725–749. doi:10.1080/01431160110040323.
    • (2002) International Journal of Remote Sensing , vol.23 , Issue.4 , pp. 725-749
    • Huang, C.1    Davis, L.S.2    Townshend, J.R.3
  • 13
    • 70350050130 scopus 로고    scopus 로고
    • An Automated Approach for Reconstructing Recent Forest Disturbance History Using Dense Landsat Time Series Stacks
    • C.Huang,, S.N.Goward, J.G.Masek, N.Thomas, Z.Zhu, and J.E.Vogelmann. 2010. “An Automated Approach for Reconstructing Recent Forest Disturbance History Using Dense Landsat Time Series Stacks.” Remote Sensing of Environment 114: 183–198. doi:10.1016/j.rse.2009.08.017.
    • (2010) Remote Sensing of Environment , vol.114 , pp. 183-198
    • Huang, C.1    Goward, S.N.2    Masek, J.G.3    Thomas, N.4    Zhu, Z.5    Vogelmann, J.E.6
  • 14
    • 84876726723 scopus 로고    scopus 로고
    • Change Detection from Remotely Sensed Images: From Pixel-Based to Object-Based Approaches
    • M.Hussain,, D.Chen, A.Cheng, H.Wie, and D.Stanley. 2013. “Change Detection from Remotely Sensed Images: From Pixel-Based to Object-Based Approaches.” ISPRS Journal of Photogrammetry and Remote Sensing 80: 91–106. doi:10.1016/j.isprsjprs.2013.03.006.
    • (2013) ISPRS Journal of Photogrammetry and Remote Sensing , vol.80 , pp. 91-106
    • Hussain, M.1    Chen, D.2    Cheng, A.3    Wie, H.4    Stanley, D.5
  • 16
    • 0037056296 scopus 로고    scopus 로고
    • Mapping of Boreal Vegetation of a Temperate Mountain in China by Multitemporal Landsat TM Imagery
    • Q.J.Liu,, T.Takamura, N.Takeuchi, and G.Shao. 2002. “Mapping of Boreal Vegetation of a Temperate Mountain in China by Multitemporal Landsat TM Imagery.” International Journal of Remote Sensing 23 (17): 3385–3405. doi:10.1080/01431160110076171.
    • (2002) International Journal of Remote Sensing , vol.23 , Issue.17 , pp. 3385-3405
    • Liu, Q.J.1    Takamura, T.2    Takeuchi, N.3    Shao, G.4
  • 18
    • 79951957617 scopus 로고    scopus 로고
    • Detection of Impervious Surface Change with Multitemporal Landsat Images in an Urban-Rural Frontier
    • D.Lu,, E.Moran, and S.Hetrick. 2011. “Detection of Impervious Surface Change with Multitemporal Landsat Images in an Urban-Rural Frontier.” ISPRS Journal of Photogrammetry and Remote Sensing 66: 298–306. doi:10.1016/j.isprsjprs.2010.10.010.
    • (2011) ISPRS Journal of Photogrammetry and Remote Sensing , vol.66 , pp. 298-306
    • Lu, D.1    Moran, E.2    Hetrick, S.3
  • 19
    • 33947591833 scopus 로고    scopus 로고
    • A Survey of Image Classification Methods and Techniques for Improving Classification Performance
    • D.Lu,, and Q.Weng. 2007. “A Survey of Image Classification Methods and Techniques for Improving Classification Performance.” International Journal of Remote Sensing 28 (5): 823–870. doi:10.1080/01431160600746456.
    • (2007) International Journal of Remote Sensing , vol.28 , Issue.5
    • Lu, D.1    Weng, Q.2
  • 20
    • 0032724134 scopus 로고    scopus 로고
    • Application of Multi-Temporal Landsat 5 TM Imagery for Wetland Identification
    • R.S.Lunetta,, and M.Balogh. 1999. “Application of Multi-Temporal Landsat 5 TM Imagery for Wetland Identification.” Photogrammetric Engineering and Remote Sensing 65 (11): 1303–1310.
    • (1999) Photogrammetric Engineering and Remote Sensing , vol.65 , Issue.11 , pp. 1303-1310
    • Lunetta, R.S.1    Balogh, M.2
  • 21
    • 43949094827 scopus 로고    scopus 로고
    • North American Forest Disturbance Mapped from Decadal Landsat Record
    • J.G.Masek,, C.Huang, R.Wolfe, W.Cohen, F.Hall, and J.Kutler. 2008. “North American Forest Disturbance Mapped from Decadal Landsat Record.” Remote Sensing of Environment 112: 2914–2926. doi:10.1016/j.rse.2008.02.010.
    • (2008) Remote Sensing of Environment , vol.112 , pp. 2914-2926
    • Masek, J.G.1    Huang, C.2    Wolfe, R.3    Cohen, W.4    Hall, F.5    Kutler, J.6
  • 23
    • 13644254629 scopus 로고    scopus 로고
    • Comparative Performance of a Modified Change Vector Analysis in Forest Change Detection
    • K.Nackaerts,, K.Vaesen, B.Muys, and P.Coppin. 2005. “Comparative Performance of a Modified Change Vector Analysis in Forest Change Detection.” International Journal of Remote Sensing 26 (5): 839–852. doi:10.1080/0143116032000160462.
    • (2005) International Journal of Remote Sensing , vol.26 , Issue.5 , pp. 839-852
    • Nackaerts, K.1    Vaesen, K.2    Muys, B.3    Coppin, P.4
  • 24
    • 84864044765 scopus 로고    scopus 로고
    • Monitoring Land Cover Change in Urban and Peri-Urbanareas Using Dense Time Stacks of Landsat Satellite Data and a Data Mining Approach
    • A.Schneider, 2012. “Monitoring Land Cover Change in Urban and Peri-Urbanareas Using Dense Time Stacks of Landsat Satellite Data and a Data Mining Approach.” Remote Sensing of Environment 124: 689–704. doi:10.1016/j.rse.2012.06.006.
    • (2012) Remote Sensing of Environment , vol.124 , pp. 689-704
    • Schneider, A.1
  • 25
    • 0024855524 scopus 로고
    • Digital Change Detection Techniques Using Remotely Sensed Data
    • A.Singh, 1989. “Digital Change Detection Techniques Using Remotely Sensed Data.” International Journal of Remote Sensing 10 (6): 989–1003. doi:10.1080/01431168908903939.
    • (1989) International Journal of Remote Sensing , vol.10 , Issue.6 , pp. 989-1003
    • Singh, A.1
  • 26
    • 0019227654 scopus 로고
    • The Use of Prior Probabilities in Maximum Likelihood Classification of Remotely Sensed Data
    • A.H.Strahler, 1980. “The Use of Prior Probabilities in Maximum Likelihood Classification of Remotely Sensed Data.” Remote Sensing of Environment 10: 135–163. doi:10.1016/0034-4257(80)90011-5.
    • (1980) Remote Sensing of Environment , vol.10 , pp. 135-163
    • Strahler, A.H.1
  • 27
    • 0029541338 scopus 로고
    • Spatial Variability of Images and the Monitoring of Changes in the Normalized Difference Vegetation Index
    • J.R.G.Townshend,, and C.O.Justice. 1995. “Spatial Variability of Images and the Monitoring of Changes in the Normalized Difference Vegetation Index.” International Journal of Remote Sensing 16: 2187–2195. doi:10.1080/01431169508954550.
    • (1995) International Journal of Remote Sensing , vol.16 , pp. 2187-2195
    • Townshend, J.R.G.1    Justice, C.O.2
  • 29
    • 66049121398 scopus 로고    scopus 로고
    • Monitoring Forest Changes in the Southwestern United States Using Multitemporal Landsat Data
    • J.E.Vogelmann,, B.Tolk, and Z.Zhu. 2009. “Monitoring Forest Changes in the Southwestern United States Using Multitemporal Landsat Data.” Remote Sensing of Environment 113: 1739–1748. doi:10.1016/j.rse.2009.04.014.
    • (2009) Remote Sensing of Environment , vol.113 , pp. 1739-1748
    • Vogelmann, J.E.1    Tolk, B.2    Zhu, Z.3
  • 30
    • 0033820790 scopus 로고    scopus 로고
    • Monitoring Growth in Rapidly Urbanizing Areas Using Remotely Sensed Data
    • D.Ward,, S.R.Phinn, and A.T.Murray. 2000. “Monitoring Growth in Rapidly Urbanizing Areas Using Remotely Sensed Data.” TheProfessional Geographer 52: 371–386. doi:10.1111/0033-0124.00232.
    • (2000) TheProfessional Geographer , vol.52 , pp. 371-386
    • Ward, D.1    Phinn, S.R.2    Murray, A.T.3
  • 31
    • 0028978288 scopus 로고
    • Improved Forest Classification in the Northern Lake States Using Multi-Temporal Landsat Imagery
    • P.T.Wolter,, D.J.Mladenoff, G.E.Host, and T.R.Crow. 1995. “Improved Forest Classification in the Northern Lake States Using Multi-Temporal Landsat Imagery.” Photogrammetric Engineering and Remote Sensing 61 (9): 1129–1143.
    • (1995) Photogrammetric Engineering and Remote Sensing , vol.61 , Issue.9 , pp. 1129-1143
    • Wolter, P.T.1    Mladenoff, D.J.2    Host, G.E.3    Crow, T.R.4
  • 32
    • 25844497537 scopus 로고    scopus 로고
    • Land Cover Classification and Change Analysis of the Twin Cities (Minnesota) Metropolitan Area by Multitemporal Landsat Remote Sensing
    • F.Yuan,, K.E.Sawaya, B.C.Loeffelholz, and M.E.Bauer. 2005. “Land Cover Classification and Change Analysis of the Twin Cities (Minnesota) Metropolitan Area by Multitemporal Landsat Remote Sensing.” Remote Sensing of Environment 98 (2–3): 317–328. doi:10.1016/j.rse.2005.08.006.
    • (2005) Remote Sensing of Environment , vol.98 , Issue.2-3 , pp. 317-328
    • Yuan, F.1    Sawaya, K.E.2    Loeffelholz, B.C.3    Bauer, M.E.4
  • 33
    • 50249177593 scopus 로고    scopus 로고
    • Comparison of Spectral Analysis Techniques for Impervious Surface Estimation Using Landsat Imagery
    • F.Yuan,, C.Wu, and M.E.Bauer. 2008. “Comparison of Spectral Analysis Techniques for Impervious Surface Estimation Using Landsat Imagery.” PhotogrammetricEngineering & Remote Sensing 74 (8): 1045–1055. doi:10.14358/PERS.74.8.1045.
    • (2008) PhotogrammetricEngineering & Remote Sensing , vol.74 , Issue.8 , pp. 1045-1055
    • Yuan, F.1    Wu, C.2    Bauer, M.E.3
  • 34
    • 84893747703 scopus 로고    scopus 로고
    • Continuous Change Detection and Classification of Land Cover Using All Available Landsat Data
    • Z.Zhu,, and C.E.Woodcock. 2014. “Continuous Change Detection and Classification of Land Cover Using All Available Landsat Data.” Remote Sensing of Environment 144: 152–171. doi:10.1016/j.rse.2014.01.011.
    • (2014) Remote Sensing of Environment , vol.144 , pp. 152-171
    • Zhu, Z.1    Woodcock, C.E.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.