메뉴 건너뛰기




Volumn 218-219, Issue , 2016, Pages 74-84

Crop yield forecasting on the Canadian Prairies by remotely sensed vegetation indices and machine learning methods

Author keywords

Artificial neural networks; Canadian Prairies; Crop yield forecasting; EVI; Machine learning; MODIS; NDVI; Remote sensing

Indexed keywords

ALGORITHM; ARTIFICIAL NEURAL NETWORK; AVHRR; CROP YIELD; MACHINE LEARNING; MODIS; NDVI; NUMERICAL MODEL; REGRESSION ANALYSIS; YIELD RESPONSE;

EID: 84954145006     PISSN: 01681923     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.agrformet.2015.11.003     Document Type: Article
Times cited : (223)

References (33)
  • 1
    • 57849083889 scopus 로고    scopus 로고
    • Predicting average regional yield and production of wheat in the Argentine Pampas by an artificial neural network approach
    • Alvarez R. Predicting average regional yield and production of wheat in the Argentine Pampas by an artificial neural network approach. Eur. J. Agron. 2009, 30:70-77.
    • (2009) Eur. J. Agron. , vol.30 , pp. 70-77
    • Alvarez, R.1
  • 3
    • 84875117682 scopus 로고    scopus 로고
    • Forecasting crop yield using remotely sensed vegetation indices and crop phenology metrics
    • Bolton D.K., Friedl M.A. Forecasting crop yield using remotely sensed vegetation indices and crop phenology metrics. Agric. Forest Meteorol. 2013, 173:74-84.
    • (2013) Agric. Forest Meteorol. , vol.173 , pp. 74-84
    • Bolton, D.K.1    Friedl, M.A.2
  • 4
    • 0036566372 scopus 로고    scopus 로고
    • Synoptic map-pattern classification using recursive partitioning and principal component analysis
    • Cannon A.J., Whitfield P.H., Lord E.R. Synoptic map-pattern classification using recursive partitioning and principal component analysis. Monthly Weather Rev. 2002, 130:1187-1206.
    • (2002) Monthly Weather Rev. , vol.130 , pp. 1187-1206
    • Cannon, A.J.1    Whitfield, P.H.2    Lord, E.R.3
  • 5
    • 22744435294 scopus 로고    scopus 로고
    • Evaluation of MODIS and NOAA AVHRR vegetation indices with in situ measurements in a semi-arid environment
    • Fensholt R., Sandholt I. Evaluation of MODIS and NOAA AVHRR vegetation indices with in situ measurements in a semi-arid environment. Int. J. Rem. Sens. 2005, 26:2561-2594.
    • (2005) Int. J. Rem. Sens. , vol.26 , pp. 2561-2594
    • Fensholt, R.1    Sandholt, I.2
  • 6
    • 84863813564 scopus 로고    scopus 로고
    • Nonlinear post-processing of numerical seasonal climate forecasts
    • Finnis J., Hsieh W.W., Lin H., Merryfield W. Nonlinear post-processing of numerical seasonal climate forecasts. Atmos.-Ocean 2012, 50:207-218.
    • (2012) Atmos.-Ocean , vol.50 , pp. 207-218
    • Finnis, J.1    Hsieh, W.W.2    Lin, H.3    Merryfield, W.4
  • 8
    • 0032311683 scopus 로고    scopus 로고
    • MODIS NDVI optimization to fit the AVHRR data series-spectral considerations
    • Gitelson A.A., Kaufman Y.J. MODIS NDVI optimization to fit the AVHRR data series-spectral considerations. Rem. Sens. Environ. 1998, 66:343-350.
    • (1998) Rem. Sens. Environ. , vol.66 , pp. 343-350
    • Gitelson, A.A.1    Kaufman, Y.J.2
  • 9
    • 84856019253 scopus 로고    scopus 로고
    • An incorporative statistic and neural approach for crop yield modeling and forecasting
    • Guo W.W., Xue H. An incorporative statistic and neural approach for crop yield modeling and forecasting. Neural Comput. Appl. 2012, 21:109-117.
    • (2012) Neural Comput. Appl. , vol.21 , pp. 109-117
    • Guo, W.W.1    Xue, H.2
  • 10
    • 0032466364 scopus 로고    scopus 로고
    • Applying neural network models to prediction and data analysis in meteorology and oceanography
    • Hsieh W.W., Tang B. Applying neural network models to prediction and data analysis in meteorology and oceanography. Bull. Am. Meteorol. Soc. 1998, 79:1855-1870.
    • (1998) Bull. Am. Meteorol. Soc. , vol.79 , pp. 1855-1870
    • Hsieh, W.W.1    Tang, B.2
  • 12
    • 0036846393 scopus 로고    scopus 로고
    • Overview of the radiometric and biophysical performance of the MODIS vegetation indices
    • Huete A., Didan K., Miura T., Rodriguez E.P., Gao G., Ferreira L.G. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Rem. Sens. Environ. 2002, 83:195-213.
    • (2002) Rem. Sens. Environ. , vol.83 , pp. 195-213
    • Huete, A.1    Didan, K.2    Miura, T.3    Rodriguez, E.P.4    Gao, G.5    Ferreira, L.G.6
  • 13
    • 0024165401 scopus 로고
    • A soil-adjusted vegetation index (SAVI)
    • Huete A.R. A soil-adjusted vegetation index (SAVI). Rem. Sens. Environ. 1988, 25:295-309.
    • (1988) Rem. Sens. Environ. , vol.25 , pp. 295-309
    • Huete, A.R.1
  • 15
    • 1942504231 scopus 로고    scopus 로고
    • An artificial neural network model for estimating crop yields using remotely sensed information
    • Jiang D., Yang X., Clinton N., Wang N. An artificial neural network model for estimating crop yields using remotely sensed information. Int. J. Rem. Sens. 2004, 25(9):1723-1732.
    • (2004) Int. J. Rem. Sens. , vol.25 , Issue.9 , pp. 1723-1732
    • Jiang, D.1    Yang, X.2    Clinton, N.3    Wang, N.4
  • 16
    • 0025920183 scopus 로고
    • The effect of water vapour on the normalized difference vegetation index derived for the Sahelian region from NOAA AVHRR data
    • Justice C.O., Eck T.F., Tanré D., Holben B.N. The effect of water vapour on the normalized difference vegetation index derived for the Sahelian region from NOAA AVHRR data. Int. J. Rem. Sens. 1991, 12:1165-1187.
    • (1991) Int. J. Rem. Sens. , vol.12 , pp. 1165-1187
    • Justice, C.O.1    Eck, T.F.2    Tanré, D.3    Holben, B.N.4
  • 17
    • 19044373009 scopus 로고    scopus 로고
    • Artificial neural networks for corn and soybean yield prediction
    • Kaul M., Hill R.L., Walthall C. Artificial neural networks for corn and soybean yield prediction. Agric. Syst. 2005, 85:1-18.
    • (2005) Agric. Syst. , vol.85 , pp. 1-18
    • Kaul, M.1    Hill, R.L.2    Walthall, C.3
  • 18
    • 35148859857 scopus 로고    scopus 로고
    • Estimating crop yield from multi-temporal satellite data using multivariate regression and neural network techniques
    • Li A., Liang S., Wang A., Qin J. Estimating crop yield from multi-temporal satellite data using multivariate regression and neural network techniques. Photogramm. Eng. Rem. Sens. 2007, 73(10):1149-1157.
    • (2007) Photogramm. Eng. Rem. Sens. , vol.73 , Issue.10 , pp. 1149-1157
    • Li, A.1    Liang, S.2    Wang, A.3    Qin, J.4
  • 19
    • 79951786712 scopus 로고    scopus 로고
    • An assessment of correlation on MODIS-NDVI and EVI with natural vegetation coverage in northern Hebei Province, China
    • Li Z., Li X., Wei D., Xu X., Wang H. An assessment of correlation on MODIS-NDVI and EVI with natural vegetation coverage in northern Hebei Province, China. Procedia Environ. Sci. 2010, 2:964-969.
    • (2010) Procedia Environ. Sci. , vol.2 , pp. 964-969
    • Li, Z.1    Li, X.2    Wei, D.3    Xu, X.4    Wang, H.5
  • 20
  • 24
    • 62849126565 scopus 로고    scopus 로고
    • Statistical spring wheat yield forecasting for the Canadian Prairie provinces
    • Qian B., De Jong R., Warren R., Chipanshi A., Hill H. Statistical spring wheat yield forecasting for the Canadian Prairie provinces. Agric. Forest Meteorol. 2009, 149:1022-1031.
    • (2009) Agric. Forest Meteorol. , vol.149 , pp. 1022-1031
    • Qian, B.1    De Jong, R.2    Warren, R.3    Chipanshi, A.4    Hill, H.5
  • 25
    • 85156274218 scopus 로고    scopus 로고
    • A practical Monte Carlo implementation of Bayesian learning
    • Rasmussen C.E. A practical Monte Carlo implementation of Bayesian learning. Adv. Neural Inform. Process. Syst. 1996, 8:598-604.
    • (1996) Adv. Neural Inform. Process. Syst. , vol.8 , pp. 598-604
    • Rasmussen, C.E.1
  • 27
    • 0036266595 scopus 로고    scopus 로고
    • Effects of spectral response function on surface reflectance and NDVI measured with moderate resolution satellite sensors
    • Trishchenko A.P., Cihlar J., Li Z. Effects of spectral response function on surface reflectance and NDVI measured with moderate resolution satellite sensors. Rem. Sens. Environ. 2002, 81:1-18.
    • (2002) Rem. Sens. Environ. , vol.81 , pp. 1-18
    • Trishchenko, A.P.1    Cihlar, J.2    Li, Z.3
  • 28
    • 67949102009 scopus 로고    scopus 로고
    • Bayesian committee of neural networks to predict travel times with confidence intervals
    • van Hinsbergen C., van Lint J., van Zuylen H. Bayesian committee of neural networks to predict travel times with confidence intervals. Transport. Res. C: Emerg. Technol. 2009, 17:498-509.
    • (2009) Transport. Res. C: Emerg. Technol. , vol.17 , pp. 498-509
    • van Hinsbergen, C.1    van Lint, J.2    van Zuylen, H.3
  • 29
    • 33750700433 scopus 로고    scopus 로고
    • Calibration of NOAA16 AVHRR over a desert site using MODIS data
    • Vermote E.F., Saleous N.Z. Calibration of NOAA16 AVHRR over a desert site using MODIS data. Rem. Sens. Environ. 2006, 105:214-220.
    • (2006) Rem. Sens. Environ. , vol.105 , pp. 214-220
    • Vermote, E.F.1    Saleous, N.Z.2
  • 30
    • 0141571482 scopus 로고    scopus 로고
    • Comparative analysis of interpolation methods in the middle Ebro Valley (Spain): application to annual precipitation and temperature
    • Vincente-Serrano S.M., Saz-Sanchez M.A., Cuadrat J.M. Comparative analysis of interpolation methods in the middle Ebro Valley (Spain): application to annual precipitation and temperature. Climate Res. 2003, 24:161-180.
    • (2003) Climate Res. , vol.24 , pp. 161-180
    • Vincente-Serrano, S.M.1    Saz-Sanchez, M.A.2    Cuadrat, J.M.3
  • 33
    • 78651265848 scopus 로고    scopus 로고
    • Seasonal prediction of winter extreme precipitation over Canada by support vector regression
    • Zeng Z., Hsieh W.W., Shabbar A., Burrows W.R. Seasonal prediction of winter extreme precipitation over Canada by support vector regression. Hydrol. Earth Syst. Sci. 2011, 15:65-74.
    • (2011) Hydrol. Earth Syst. Sci. , vol.15 , pp. 65-74
    • Zeng, Z.1    Hsieh, W.W.2    Shabbar, A.3    Burrows, W.R.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.