메뉴 건너뛰기




Volumn 21, Issue 1, 2012, Pages 109-117

An incorporative statistic and neural approach for crop yield modelling and forecasting

Author keywords

Correlation analysis; Crop yield; Modelling and forecasting; Neural networks

Indexed keywords

AUSTRALIA; CORRELATION ANALYSIS; CROP YIELD; DATA CLEANING; DATA EXPANSION; DATA MODELLING; GENERAL TRENDS; GENERIC NATURE; MEAN ABSOLUTE ERROR; MULTI LAYER PERCEPTRON; NEURAL NETWORK TRAINING; OTHER APPLICATIONS; POLYNOMIAL CORRELATIONS; QUANTITATIVE DATA; QUEENSLAND; SUPPORTING ROLE; THIRD-ORDER; WHEAT PRODUCTION; WHEAT YIELD;

EID: 84856019253     PISSN: 09410643     EISSN: None     Source Type: Journal    
DOI: 10.1007/s00521-011-0636-0     Document Type: Article
Times cited : (28)

References (31)
  • 1
    • 0030465703 scopus 로고    scopus 로고
    • Crop growth models for decision support systems
    • Jame YW, Cutforth HW (1996) Crop growth models for decision support systems. Can J Plant Sci 76: 9-19.
    • (1996) Can J Plant Sci , vol.76 , pp. 9-19
    • Jame, Y.W.1    Cutforth, H.W.2
  • 2
    • 0037411236 scopus 로고    scopus 로고
    • Predicting regional rice production in South Korea using spatial data and crop-growth modelling
    • Yun JI (2003) Predicting regional rice production in South Korea using spatial data and crop-growth modelling. Agric Syst 77: 23-38.
    • (2003) Agric Syst , vol.77 , pp. 23-38
    • Yun, J.I.1
  • 3
    • 14744267200 scopus 로고    scopus 로고
    • Remote sensing of crop production in China by production efficiency models: Models comparisons, estimates and uncertainties
    • Tao F, Yokozawa M, Zhang Z, Xu Y, Hayashi Y (2005) Remote sensing of crop production in China by production efficiency models: Models comparisons, estimates and uncertainties. Ecol Model 183: 385-396.
    • (2005) Ecol Model , vol.183 , pp. 385-396
    • Tao, F.1    Yokozawa, M.2    Zhang, Z.3    Xu, Y.4    Hayashi, Y.5
  • 6
    • 0000032342 scopus 로고    scopus 로고
    • How effective are neural networks at forecasting and prediction? A review and evaluation
    • Adya M, Collopy F (1998) How effective are neural networks at forecasting and prediction? A review and evaluation. J Forecast 17: 481-495.
    • (1998) J Forecast , vol.17 , pp. 481-495
    • Adya, M.1    Collopy, F.2
  • 7
    • 15244355385 scopus 로고    scopus 로고
    • Bayesian neural networks for nonlinear time series forecasting
    • Liang F (2005) Bayesian neural networks for nonlinear time series forecasting. Stat Comput 15: 13-29.
    • (2005) Stat Comput , vol.15 , pp. 13-29
    • Liang, F.1
  • 8
    • 36348935677 scopus 로고    scopus 로고
    • Quarterly time-series forecasting with neural networks
    • Zhang GP, Kline D (2007) Quarterly time-series forecasting with neural networks. IEEE Trans Neural Netw 18: 1800-1814.
    • (2007) IEEE Trans Neural Netw , vol.18 , pp. 1800-1814
    • Zhang, G.P.1    Kline, D.2
  • 9
    • 0037243071 scopus 로고    scopus 로고
    • Time series forecasting using a hybrid ARIMA and neural network model
    • Zhang GP (2003) Time series forecasting using a hybrid ARIMA and neural network model. Neurocomputing 50: 159-175.
    • (2003) Neurocomputing , vol.50 , pp. 159-175
    • Zhang, G.P.1
  • 10
    • 27744467138 scopus 로고    scopus 로고
    • A comparative study of autoregressive neural network hybrids
    • Taskaya-Temizel T, Casey M (2005) A comparative study of autoregressive neural network hybrids. Neural Netw 18: 781-789.
    • (2005) Neural Netw , vol.18 , pp. 781-789
    • Taskaya-Temizel, T.1    Casey, M.2
  • 11
    • 13544270843 scopus 로고    scopus 로고
    • A novel nonlinear ensemble forecasting model incorporating GLAR and ANN for foreign exchange rates
    • Yu L, Wang S, Lai K (2005) A novel nonlinear ensemble forecasting model incorporating GLAR and ANN for foreign exchange rates. Comput Oper Res 32: 2523-2541.
    • (2005) Comput Oper Res , vol.32 , pp. 2523-2541
    • Yu, L.1    Wang, S.2    Lai, K.3
  • 12
    • 0034213207 scopus 로고    scopus 로고
    • Contribution of agrometeorology to the simulation of crop production and its applications
    • Hoogenboom G (2000) Contribution of agrometeorology to the simulation of crop production and its applications. Agric Forest Meteorol 103: 137-157.
    • (2000) Agric Forest Meteorol , vol.103 , pp. 137-157
    • Hoogenboom, G.1
  • 14
    • 33947601468 scopus 로고    scopus 로고
    • Relating crop yield to topographic attributes using spatial analysis neural networks and regression
    • Green TR, Salas JD, Martinez A, Erskine RH (2007) Relating crop yield to topographic attributes using spatial analysis neural networks and regression. Geoderma 139: 23-37.
    • (2007) Geoderma , vol.139 , pp. 23-37
    • Green, T.R.1    Salas, J.D.2    Martinez, A.3    Erskine, R.H.4
  • 15
    • 0000126201 scopus 로고
    • Effect of soil profile type and fertilizer on moisture use by wheat grown on fallow or stubble land
    • de Jong E, Rennie DA (1969) Effect of soil profile type and fertilizer on moisture use by wheat grown on fallow or stubble land. Can J Soil Sci 49: 189-197.
    • (1969) Can J Soil Sci , vol.49 , pp. 189-197
    • de Jong, E.1    Rennie, D.A.2
  • 16
    • 0024224943 scopus 로고
    • Effect of crop rotation and fertilization on the quantitative relationship between spring wheat yield and moisture use in southwest Saskatchewan
    • Campbell CA, Zentner RP, Johnson PJ (1988) Effect of crop rotation and fertilization on the quantitative relationship between spring wheat yield and moisture use in southwest Saskatchewan. Can J Soil Sci 68: 1-16.
    • (1988) Can J Soil Sci , vol.68 , pp. 1-16
    • Campbell, C.A.1    Zentner, R.P.2    Johnson, P.J.3
  • 17
    • 84856009131 scopus 로고    scopus 로고
    • Australian Bureau of Statistics, Canberra: Commonwealth of Australia
    • Australian Bureau of Statistics (2008) Agricultural commodities-historical data. Commonwealth of Australia, Canberra.
    • (2008) Agricultural Commodities-Historical Data
  • 19
    • 0031098782 scopus 로고    scopus 로고
    • Preparing the right data diet for training neural networks
    • Yale K (1997) Preparing the right data diet for training neural networks. IEEE Spectr 3: 64-66.
    • (1997) IEEE Spectr , vol.3 , pp. 64-66
    • Yale, K.1
  • 20
    • 55349089632 scopus 로고    scopus 로고
    • Ensemble approaches to facial action unit classification
    • Windeatt Y, Dias K (2008) Ensemble approaches to facial action unit classification. Lect Notes Comput Sci 5197: 551-559.
    • (2008) Lect Notes Comput Sci , vol.5197 , pp. 551-559
    • Windeatt, Y.1    Dias, K.2
  • 21
    • 0024880831 scopus 로고
    • Multilayer feedforward networks are universal approximators
    • Hornik K, Stinchcomb M, White H (1989) Multilayer feedforward networks are universal approximators. Neural Netw 2: 359-366.
    • (1989) Neural Netw , vol.2 , pp. 359-366
    • Hornik, K.1    Stinchcomb, M.2    White, H.3
  • 22
    • 0012195187 scopus 로고
    • Some asymptotic results for learning in single hidden layer feedforward network models
    • White H (1989) Some asymptotic results for learning in single hidden layer feedforward network models. J Am Stat Assoc 84: 1008-1013.
    • (1989) J Am Stat Assoc , vol.84 , pp. 1008-1013
    • White, H.1
  • 23
    • 33847300523 scopus 로고    scopus 로고
    • Prediction of the response under impact of steel armours using a multilayer perceptron
    • Garcia-Crespo A, Ruiz-Mezcua B, Fernandez-Fdz D, Zaera R (2007) Prediction of the response under impact of steel armours using a multilayer perceptron. Neural Comput Appl 16: 147-154.
    • (2007) Neural Comput Appl , vol.16 , pp. 147-154
    • Garcia-Crespo, A.1    Ruiz-Mezcua, B.2    Fernandez-Fdz, D.3    Zaera, R.4
  • 24
    • 67349185575 scopus 로고    scopus 로고
    • Intelligent methods for solving inverse problems of backscattering spectra with noise: A comparison between neural networks and simulated annealing
    • Li M, Guo W, Verma B, Tickle K, O'Connor J (2009) Intelligent methods for solving inverse problems of backscattering spectra with noise: A comparison between neural networks and simulated annealing. Neural Comput Appl 18: 423-430.
    • (2009) Neural Comput Appl , vol.18 , pp. 423-430
    • Li, M.1    Guo, W.2    Verma, B.3    Tickle, K.4    O'Connor, J.5
  • 25
    • 63049116307 scopus 로고    scopus 로고
    • Ability to forecast unsteady aerodynamic forces of flapping airfoils by artificial neural network
    • Kurtulus DF (2009) Ability to forecast unsteady aerodynamic forces of flapping airfoils by artificial neural network. Neural Comput Appl 18: 359-368.
    • (2009) Neural Comput Appl , vol.18 , pp. 359-368
    • Kurtulus, D.F.1
  • 26
    • 71549166008 scopus 로고    scopus 로고
    • Incorporating statistical and neural network approaches for student course satisfaction analysis and prediction
    • Guo WW (2010) Incorporating statistical and neural network approaches for student course satisfaction analysis and prediction. Expert Syst Appl 37: 3358-3365.
    • (2010) Expert Syst Appl , vol.37 , pp. 3358-3365
    • Guo, W.W.1
  • 27
    • 0000169232 scopus 로고
    • An algorithm for least-squares estimation of nonlinear parameters
    • Marquardt D (1963) An algorithm for least-squares estimation of nonlinear parameters. SIAM J Appl Math 11: 431-441.
    • (1963) SIAM J Appl Math , vol.11 , pp. 431-441
    • Marquardt, D.1
  • 28
    • 0028543366 scopus 로고
    • Training feedforward networks with the Marquardt algorithm
    • Hagan M, Menhaj M (1994) Training feedforward networks with the Marquardt algorithm. IEEE Trans Neural Netw 5: 989-993.
    • (1994) IEEE Trans Neural Netw , vol.5 , pp. 989-993
    • Hagan, M.1    Menhaj, M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.