-
1
-
-
85082149871
-
Bootstrapping
-
S. Abney. Bootstrapping. In ACL. ACM, 2002.
-
(2002)
ACL. ACM
-
-
Abney, S.1
-
3
-
-
80052204125
-
Learning from multiple partially observed views - An application to multilingual text categorization
-
M.-R. Amini, N. Usunier, C. Goutte, et al. Learning from multiple partially observed views - an application to multilingual text categorization. In NIPS, 2009.
-
(2009)
NIPS
-
-
Amini, M.-R.1
Usunier, N.2
Goutte, C.3
-
4
-
-
26944451289
-
A pac-style model for learning from labeled and unlabeled data
-
Springer
-
M.-F. Balcan and A. Blum. A pac-style model for learning from labeled and unlabeled data. In Learning Theory, pages 111-126. Springer, 2005.
-
(2005)
Learning Theory
, pp. 111-126
-
-
Balcan, M.-F.1
Blum, A.2
-
5
-
-
77950343112
-
A discriminative model for semi-supervised learning
-
M.-F. Balcan and A. Blum. A discriminative model for semi-supervised learning. Journal of the ACM, 57(3):19, 2010.
-
(2010)
Journal of the ACM
, vol.57
, Issue.3
, pp. 19
-
-
Balcan, M.-F.1
Blum, A.2
-
6
-
-
33750738734
-
Co-training and expansion: Towards bridging theory and practice
-
M.-F. Balcan, A. Blum, and K. Yang. Co-training and expansion: towards bridging theory and practice. In NIPS, 2004.
-
(2004)
NIPS
-
-
Balcan, M.-F.1
Blum, A.2
Yang, K.3
-
7
-
-
77955659703
-
The true sample complexity of active learning
-
M.-F. Balcan, S. Hanneke, and J. W. Vaughan. The true sample complexity of active learning. Machine learning, 80(2-3):111-139, 2010.
-
(2010)
Machine Learning
, vol.80
, Issue.2-3
, pp. 111-139
-
-
Balcan, M.-F.1
Hanneke, S.2
Vaughan, J.W.3
-
8
-
-
84897483120
-
Efficient semi-supervised and active learning of disjunctions
-
N. Balcan, C. Berlind, S. Ehrlich, and Y. Liang. Efficient semi-supervised and active learning of disjunctions. In ICML, 2013.
-
(2013)
ICML
-
-
Balcan, N.1
Berlind, C.2
Ehrlich, S.3
Liang, Y.4
-
9
-
-
77956501439
-
Does unlabeled data provably help? Worst-case analysis of the sample complexity of semi-supervised learning
-
S. Ben-David, T. Lu, and D. Pal. Does unlabeled data provably help? worst-case analysis of the sample complexity of semi-supervised learning. In COLT, 2008.
-
(2008)
COLT
-
-
Ben-David, S.1
Lu, T.2
Pal, D.3
-
10
-
-
0031620208
-
Combining labeled and unlabeled data with co-training
-
A. Blum and T. Mitchell. Combining labeled and unlabeled data with co-training. In COLT, 1998.
-
(1998)
COLT
-
-
Blum, A.1
Mitchell, T.2
-
11
-
-
0029195475
-
On the exponential value of labeled samples
-
V. Castelli and T. M. Cover. On the exponential value of labeled samples. Pattern Recognition Letters, 16(1):105-111, 1995.
-
(1995)
Pattern Recognition Letters
, vol.16
, Issue.1
, pp. 105-111
-
-
Castelli, V.1
Cover, T.M.2
-
12
-
-
0001662441
-
The relative value of labeled and unlabeled samples in pattern recognition with an unknown mixing parameter
-
V. Castelli and T. M. Cover. The relative value of labeled and unlabeled samples in pattern recognition with an unknown mixing parameter. Information Theory, IEEE Transactions on, 42(6):2102-2117, 1996.
-
(1996)
Information Theory, IEEE Transactions on
, vol.42
, Issue.6
, pp. 2102-2117
-
-
Castelli, V.1
Cover, T.M.2
-
13
-
-
80052418610
-
Multi-view learning in the presence of view disagreement
-
C. Christoudias, R. Urtasun, and T. Darrell. Multi-view learning in the presence of view disagreement. In UAI, 2008.
-
(2008)
UAI
-
-
Christoudias, C.1
Urtasun, R.2
Darrell, T.3
-
14
-
-
67649878314
-
A co-training algorithm for multi-view data with applications in data fusion
-
M. Culp and G. Michailidis. A co-training algorithm for multi-view data with applications in data fusion. Journal of chemometrics, 23(6):294-303, 2009.
-
(2009)
Journal of Chemometrics
, vol.23
, Issue.6
, pp. 294-303
-
-
Culp, M.1
Michailidis, G.2
-
15
-
-
33645146449
-
Histograms of oriented gradients for human detection
-
N. Dalal and B. Triggs. Histograms of oriented gradients for human detection. In CVPR, 2005.
-
(2005)
CVPR
-
-
Dalal, N.1
Triggs, B.2
-
19
-
-
84902529231
-
Theory of disagreement-based active learning
-
S. Hanneke. Theory of disagreement-based active learning. Foundations and Trends@ in Machine Learning, 7(2-3):131-309, 2014.
-
(2014)
Foundations and Trends@ in Machine Learning
, vol.7
, Issue.2-3
, pp. 131-309
-
-
Hanneke, S.1
-
20
-
-
84902529231
-
Theory of disagreement-based active learning
-
S. Hanneke. Theory of disagreement-based active learning. Foundations and Trends@ in Machine Learning, 7(2-3):131-309, 2014.
-
(2014)
Foundations and Trends@ in Machine Learning
, vol.7
, Issue.2-3
, pp. 131-309
-
-
Hanneke, S.1
-
22
-
-
85082161225
-
Neural network learning: Theoretical foundations
-
J. Shawe-Taylor. Neural network learning: Theoretical foundations. AI Magazine, 22 (2):99, 2001.
-
(2001)
AI Magazine
, vol.22
, Issue.2
, pp. 99
-
-
Shawe-Taylor, J.1
-
23
-
-
33750373672
-
Large scale semi-supervised linear svms
-
V. Sindhwani and S. S. Keerthi. Large scale semi-supervised linear svms. In SIGIR, 2006.
-
(2006)
SIGIR
-
-
Sindhwani, V.1
Keerthi, S.S.2
-
25
-
-
84863338319
-
Unlabeled data: Now it helps, now it doesn't
-
A. Singh, R. Nowak, and X. Zhu. Unlabeled data: now it helps, now it doesn't. In NIPS, 2009.
-
(2009)
NIPS
-
-
Singh, A.1
Nowak, R.2
Zhu, X.3
-
26
-
-
67650253606
-
The value of labeled and unlabeled examples when the model is imperfect
-
K. Sinha and M. Belkin. The value of labeled and unlabeled examples when the model is imperfect. In NIPS, 2007.
-
(2007)
NIPS
-
-
Sinha, K.1
Belkin, M.2
-
27
-
-
56449102315
-
On multi-view active learning and the combination with semi-supervised learning
-
W. Wang and Z.-H. Zhou. On multi-view active learning and the combination with semi-supervised learning. In ICML, 2008.
-
(2008)
ICML
-
-
Wang, W.1
Zhou, Z.-H.2
|