메뉴 건너뛰기




Volumn 2015-August, Issue , 2015, Pages 627-634

Reducing the unlabeled sample complexity of semi-supervised multi-view learning

Author keywords

Multi view learning; Sample complexity; Semi supervised learning

Indexed keywords

ERRORS; SUPERVISED LEARNING; VIRTUAL REALITY;

EID: 84954098544     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/2783258.2783409     Document Type: Conference Paper
Times cited : (11)

References (30)
  • 1
    • 85082149871 scopus 로고    scopus 로고
    • Bootstrapping
    • S. Abney. Bootstrapping. In ACL. ACM, 2002.
    • (2002) ACL. ACM
    • Abney, S.1
  • 3
    • 80052204125 scopus 로고    scopus 로고
    • Learning from multiple partially observed views - An application to multilingual text categorization
    • M.-R. Amini, N. Usunier, C. Goutte, et al. Learning from multiple partially observed views - an application to multilingual text categorization. In NIPS, 2009.
    • (2009) NIPS
    • Amini, M.-R.1    Usunier, N.2    Goutte, C.3
  • 4
    • 26944451289 scopus 로고    scopus 로고
    • A pac-style model for learning from labeled and unlabeled data
    • Springer
    • M.-F. Balcan and A. Blum. A pac-style model for learning from labeled and unlabeled data. In Learning Theory, pages 111-126. Springer, 2005.
    • (2005) Learning Theory , pp. 111-126
    • Balcan, M.-F.1    Blum, A.2
  • 5
    • 77950343112 scopus 로고    scopus 로고
    • A discriminative model for semi-supervised learning
    • M.-F. Balcan and A. Blum. A discriminative model for semi-supervised learning. Journal of the ACM, 57(3):19, 2010.
    • (2010) Journal of the ACM , vol.57 , Issue.3 , pp. 19
    • Balcan, M.-F.1    Blum, A.2
  • 6
    • 33750738734 scopus 로고    scopus 로고
    • Co-training and expansion: Towards bridging theory and practice
    • M.-F. Balcan, A. Blum, and K. Yang. Co-training and expansion: towards bridging theory and practice. In NIPS, 2004.
    • (2004) NIPS
    • Balcan, M.-F.1    Blum, A.2    Yang, K.3
  • 7
    • 77955659703 scopus 로고    scopus 로고
    • The true sample complexity of active learning
    • M.-F. Balcan, S. Hanneke, and J. W. Vaughan. The true sample complexity of active learning. Machine learning, 80(2-3):111-139, 2010.
    • (2010) Machine Learning , vol.80 , Issue.2-3 , pp. 111-139
    • Balcan, M.-F.1    Hanneke, S.2    Vaughan, J.W.3
  • 8
    • 84897483120 scopus 로고    scopus 로고
    • Efficient semi-supervised and active learning of disjunctions
    • N. Balcan, C. Berlind, S. Ehrlich, and Y. Liang. Efficient semi-supervised and active learning of disjunctions. In ICML, 2013.
    • (2013) ICML
    • Balcan, N.1    Berlind, C.2    Ehrlich, S.3    Liang, Y.4
  • 9
    • 77956501439 scopus 로고    scopus 로고
    • Does unlabeled data provably help? Worst-case analysis of the sample complexity of semi-supervised learning
    • S. Ben-David, T. Lu, and D. Pal. Does unlabeled data provably help? worst-case analysis of the sample complexity of semi-supervised learning. In COLT, 2008.
    • (2008) COLT
    • Ben-David, S.1    Lu, T.2    Pal, D.3
  • 10
    • 0031620208 scopus 로고    scopus 로고
    • Combining labeled and unlabeled data with co-training
    • A. Blum and T. Mitchell. Combining labeled and unlabeled data with co-training. In COLT, 1998.
    • (1998) COLT
    • Blum, A.1    Mitchell, T.2
  • 11
    • 0029195475 scopus 로고
    • On the exponential value of labeled samples
    • V. Castelli and T. M. Cover. On the exponential value of labeled samples. Pattern Recognition Letters, 16(1):105-111, 1995.
    • (1995) Pattern Recognition Letters , vol.16 , Issue.1 , pp. 105-111
    • Castelli, V.1    Cover, T.M.2
  • 12
    • 0001662441 scopus 로고    scopus 로고
    • The relative value of labeled and unlabeled samples in pattern recognition with an unknown mixing parameter
    • V. Castelli and T. M. Cover. The relative value of labeled and unlabeled samples in pattern recognition with an unknown mixing parameter. Information Theory, IEEE Transactions on, 42(6):2102-2117, 1996.
    • (1996) Information Theory, IEEE Transactions on , vol.42 , Issue.6 , pp. 2102-2117
    • Castelli, V.1    Cover, T.M.2
  • 13
    • 80052418610 scopus 로고    scopus 로고
    • Multi-view learning in the presence of view disagreement
    • C. Christoudias, R. Urtasun, and T. Darrell. Multi-view learning in the presence of view disagreement. In UAI, 2008.
    • (2008) UAI
    • Christoudias, C.1    Urtasun, R.2    Darrell, T.3
  • 14
    • 67649878314 scopus 로고    scopus 로고
    • A co-training algorithm for multi-view data with applications in data fusion
    • M. Culp and G. Michailidis. A co-training algorithm for multi-view data with applications in data fusion. Journal of chemometrics, 23(6):294-303, 2009.
    • (2009) Journal of Chemometrics , vol.23 , Issue.6 , pp. 294-303
    • Culp, M.1    Michailidis, G.2
  • 15
    • 33645146449 scopus 로고    scopus 로고
    • Histograms of oriented gradients for human detection
    • N. Dalal and B. Triggs. Histograms of oriented gradients for human detection. In CVPR, 2005.
    • (2005) CVPR
    • Dalal, N.1    Triggs, B.2
  • 19
    • 84902529231 scopus 로고    scopus 로고
    • Theory of disagreement-based active learning
    • S. Hanneke. Theory of disagreement-based active learning. Foundations and Trends@ in Machine Learning, 7(2-3):131-309, 2014.
    • (2014) Foundations and Trends@ in Machine Learning , vol.7 , Issue.2-3 , pp. 131-309
    • Hanneke, S.1
  • 20
    • 84902529231 scopus 로고    scopus 로고
    • Theory of disagreement-based active learning
    • S. Hanneke. Theory of disagreement-based active learning. Foundations and Trends@ in Machine Learning, 7(2-3):131-309, 2014.
    • (2014) Foundations and Trends@ in Machine Learning , vol.7 , Issue.2-3 , pp. 131-309
    • Hanneke, S.1
  • 22
    • 85082161225 scopus 로고    scopus 로고
    • Neural network learning: Theoretical foundations
    • J. Shawe-Taylor. Neural network learning: Theoretical foundations. AI Magazine, 22 (2):99, 2001.
    • (2001) AI Magazine , vol.22 , Issue.2 , pp. 99
    • Shawe-Taylor, J.1
  • 23
    • 33750373672 scopus 로고    scopus 로고
    • Large scale semi-supervised linear svms
    • V. Sindhwani and S. S. Keerthi. Large scale semi-supervised linear svms. In SIGIR, 2006.
    • (2006) SIGIR
    • Sindhwani, V.1    Keerthi, S.S.2
  • 25
    • 84863338319 scopus 로고    scopus 로고
    • Unlabeled data: Now it helps, now it doesn't
    • A. Singh, R. Nowak, and X. Zhu. Unlabeled data: now it helps, now it doesn't. In NIPS, 2009.
    • (2009) NIPS
    • Singh, A.1    Nowak, R.2    Zhu, X.3
  • 26
    • 67650253606 scopus 로고    scopus 로고
    • The value of labeled and unlabeled examples when the model is imperfect
    • K. Sinha and M. Belkin. The value of labeled and unlabeled examples when the model is imperfect. In NIPS, 2007.
    • (2007) NIPS
    • Sinha, K.1    Belkin, M.2
  • 27
    • 56449102315 scopus 로고    scopus 로고
    • On multi-view active learning and the combination with semi-supervised learning
    • W. Wang and Z.-H. Zhou. On multi-view active learning and the combination with semi-supervised learning. In ICML, 2008.
    • (2008) ICML
    • Wang, W.1    Zhou, Z.-H.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.