-
1
-
-
84887591836
-
A preliminary study on a recommender system for the million songs dataset challenge
-
F. Aiolli. A preliminary study on a recommender system for the million songs dataset challenge. In IIR, pages 73-83, 2013.
-
(2013)
IIR
, pp. 73-83
-
-
Aiolli, F.1
-
2
-
-
57349151435
-
Video suggestion and discovery for youtube: Taking random walks through the view graph
-
New York, NY, USA, ACM
-
S. Baluja, R. Seth, D. Sivakumar, Y. Jing, J. Yagnik, S. Kumar, D. Ravichandran, and M. Aly. Video suggestion and discovery for youtube: taking random walks through the view graph. In Proceedings of the 17th international conference on World Wide Web, WWW '08, pages 895-904, New York, NY, USA, 2008. ACM.
-
(2008)
Proceedings of the 17th International Conference on World Wide Web, WWW '08
, pp. 895-904
-
-
Baluja, S.1
Seth, R.2
Sivakumar, D.3
Jing, Y.4
Yagnik, J.5
Kumar, S.6
Ravichandran, D.7
Aly, M.8
-
5
-
-
3042821101
-
Item-based top-n recommendation algorithms
-
M. Deshpande and G. Karypis. Item-based top-n recommendation algorithms. ACM Trans. Inf. Syst., 22(1):143-177, 2004.
-
(2004)
ACM Trans. Inf. Syst.
, vol.22
, Issue.1
, pp. 143-177
-
-
Deshpande, M.1
Karypis, G.2
-
6
-
-
81055135842
-
A comprehensive survey of neighborhood-based recommendation methods
-
C. Desrosiers and G. Karypis. A comprehensive survey of neighborhood-based recommendation methods. In Recommender Systems Handbook, pages 107-144. 2011.
-
(2011)
Recommender Systems Handbook
, pp. 107-144
-
-
Desrosiers, C.1
Karypis, G.2
-
7
-
-
67049164166
-
Collaborative filtering for implicit feedback datasets
-
Y. Hu, Y. Koren, and C. Volinsky. Collaborative filtering for implicit feedback datasets. In ICDM, pages 263-272, 2008.
-
(2008)
ICDM
, pp. 263-272
-
-
Hu, Y.1
Koren, Y.2
Volinsky, C.3
-
8
-
-
0035747556
-
Evaluation of item-based top-n recommendation algorithms
-
G. Karypis. Evaluation of item-based top-n recommendation algorithms. In CIKM, pages 247-254, 2001.
-
(2001)
CIKM
, pp. 247-254
-
-
Karypis, G.1
-
10
-
-
84861014898
-
The million song dataset challenge
-
New York, NY, USA, ACM
-
B. McFee, T. Bertin-Mahieux, D. P. Ellis, and G. R. Lanckriet. The million song dataset challenge. In Proceedings of the 21st international conference companion on World Wide Web, WWW '12 Companion, pages 909-916, New York, NY, USA, 2012. ACM.
-
(2012)
Proceedings of the 21st International Conference Companion on World Wide Web, WWW '12 Companion
, pp. 909-916
-
-
McFee, B.1
Bertin-Mahieux, T.2
Ellis, D.P.3
Lanckriet, G.R.4
-
11
-
-
84887592199
-
Top-n recommendations from implicit feedback leveraging linked open data
-
ACM, ACM Press
-
V. C. Ostuni, T. Di Noia, E. Di Sciascio, and R. Mirizzi. Top-n recommendations from implicit feedback leveraging linked open data. In 7th ACM Conference on Recommender Systems (RecSys 2013). ACM, ACM Press, 2013.
-
(2013)
7th ACM Conference on Recommender Systems (RecSys 2013)
-
-
Ostuni, V.C.1
Di Noia, T.2
Di Sciascio, E.3
Mirizzi, R.4
-
12
-
-
85052617391
-
Item-based collaborative filtering recommendation algorithms
-
B. M. Sarwar, G. Karypis, J. A. Konstan, and J. Riedl. Item-based collaborative filtering recommendation algorithms. In WWW, pages 285-295, 2001.
-
(2001)
WWW
, pp. 285-295
-
-
Sarwar, B.M.1
Karypis, G.2
Konstan, J.A.3
Riedl, J.4
-
14
-
-
84889587149
-
Collaborative ranking with 17 parameters
-
P. Bartlett, F. Pereira, C. Burges, L. Bottou, and K. Weinberger, editors
-
M. Volkovs and R. Zemel. Collaborative ranking with 17 parameters. In P. Bartlett, F. Pereira, C. Burges, L. Bottou, and K. Weinberger, editors, Advances in Neural Information Processing Systems 25, pages 2303-2311. 2012.
-
(2012)
Advances in Neural Information Processing Systems
, vol.25
, pp. 2303-2311
-
-
Volkovs, M.1
Zemel, R.2
-
15
-
-
33745872861
-
A user-item relevance model for log-based collaborative filtering
-
M. Lalmas, A. MacFarlane, S. M. RÃijger, A. Tombros, T. Tsikrika, and A. Yavlinsky, editors, volume 3936 of Lecture Notes in Computer Science, Springer
-
J. Wang, A. P. de Vries, and M. J. T. Reinders. A user-item relevance model for log-based collaborative filtering. In M. Lalmas, A. MacFarlane, S. M. RÃijger, A. Tombros, T. Tsikrika, and A. Yavlinsky, editors, ECIR, volume 3936 of Lecture Notes in Computer Science, pages 37-48. Springer, 2006.
-
(2006)
ECIR
, pp. 37-48
-
-
Wang, J.1
De Vries, A.P.2
Reinders, M.J.T.3
|