메뉴 건너뛰기




Volumn , Issue , 2015, Pages 333-342

Efficient and scalable metafeature-based document classification using massively parallel computing

Author keywords

Document classification; Meta features; Parallelism

Indexed keywords

ARTIFICIAL INTELLIGENCE; INFORMATION RETRIEVAL; INFORMATION RETRIEVAL SYSTEMS; LEARNING ALGORITHMS; LEARNING SYSTEMS; NATURAL LANGUAGE PROCESSING SYSTEMS; RECOMMENDER SYSTEMS; SEMANTICS;

EID: 84953790680     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/2766462.2767743     Document Type: Conference Paper
Times cited : (8)

References (24)
  • 3
    • 12144288329 scopus 로고    scopus 로고
    • Is combining classifiers with stacking better than selecting the best one?
    • S. Dzeroski and B. Zenko. Is combining classifiers with stacking better than selecting the best one? Machine Learning, 54(3):255-273, 2004.
    • (2004) Machine Learning , vol.54 , Issue.3 , pp. 255-273
    • Dzeroski, S.1    Zenko, B.2
  • 4
    • 50949133669 scopus 로고    scopus 로고
    • LIBLINEAR: A library for large linear classification
    • R.-E. Fan, K.-W. Chang, C.-J. Hsieh, X.-R. Wang, and C.-J. Lin. LIBLINEAR: A library for large linear classification. JMLR, 9:1871-1874, 2008.
    • (2008) JMLR , vol.9 , pp. 1871-1874
    • Fan, R.-E.1    Chang, K.-W.2    Hsieh, C.-J.3    Wang, X.-R.4    Lin, C.-J.5
  • 5
  • 6
    • 7444230008 scopus 로고    scopus 로고
    • Discriminative methods for multi-labeled classification
    • S. Godbole and S. Sarawagi. Discriminative methods for multi-labeled classification. In Proc. PAKDD, pages 22-30, 2004.
    • (2004) Proc. PAKDD , pp. 22-30
    • Godbole, S.1    Sarawagi, S.2
  • 7
    • 77956045017 scopus 로고    scopus 로고
    • Multilabel classification with meta-level features
    • S. Gopal and Y. Yang. Multilabel classification with meta-level features. In Proc. SIGIR, pages 315-322, 2010.
    • (2010) Proc. SIGIR , pp. 315-322
    • Gopal, S.1    Yang, Y.2
  • 8
    • 85048813661 scopus 로고    scopus 로고
    • A GPU database for real-time big data analytics and interactive visualization - (map-d)
    • T. Graham. A gpu database for real-time big data analytics and interactive visualization - (map-d). In NVIDIA GTC-GPU Technology Conference-2014, 2014.
    • (2014) NVIDIA GTC-GPU Technology Conference-2014
    • Graham, T.1
  • 9
    • 84957069814 scopus 로고    scopus 로고
    • Text categorization with suport vector machines: Learning with many relevant features
    • T. Joachims. Text categorization with suport vector machines: Learning with many relevant features. In Proc. ECML, pages 137-142, 1998.
    • (1998) Proc. ECML , pp. 137-142
    • Joachims, T.1
  • 10
    • 79960321565 scopus 로고    scopus 로고
    • A practical GPU based knn algorithm
    • Q. Kuang and L. Zhao. L.: A practical gpu based knn algorithm. In In Proc. ISCSCT), pages 151-155, 2009.
    • (2009) Proc. ISCSCT) , pp. 151-155
    • Kuang, Q.1    Zhao, L.L.2
  • 11
    • 36448989607 scopus 로고    scopus 로고
    • Using clustering to enhance text classification
    • A. Kyriakopoulou and T. Kalamboukis. Using clustering to enhance text classification. In Proc. SIGIR, pages 805-806, 2007.
    • (2007) Proc. SIGIR , pp. 805-806
    • Kyriakopoulou, A.1    Kalamboukis, T.2
  • 12
    • 33750835057 scopus 로고    scopus 로고
    • Proposing a new term weighting scheme for text categorization
    • M. Lan, C.-L. Tan, and H.-B. Low. Proposing a new term weighting scheme for text categorization. In Proc. AAAI, pages 763-768, 2006.
    • (2006) Proc. AAAI , pp. 763-768
    • Lan, M.1    Tan, C.-L.2    Low, H.-B.3
  • 13
    • 84876811202 scopus 로고    scopus 로고
    • Rcv1: A new benchmark collection for text categorization research
    • D. D. Lewis, Y. Yang, T. G. Rose, and F. Li. Rcv1: A new benchmark collection for text categorization research. JMLR., 5:361-397, 2004.
    • (2004) JMLR. , vol.5 , pp. 361-397
    • Lewis, D.D.1    Yang, Y.2    Rose, T.G.3    Li, F.4
  • 14
    • 77950879385 scopus 로고    scopus 로고
    • Cuknn: A parallel implementation of k-nearest neighbor on CUDA-enabled GPU
    • S. Liang, C. Wang, Y. Liu, and L. Jian. Cuknn: A parallel implementation of k-nearest neighbor on cuda-enabled gpu. In IEEE YC-ICT'09., pages 415-418, 2009.
    • (2009) IEEE YC-ICT'09. , pp. 415-418
    • Liang, S.1    Wang, C.2    Liu, Y.3    Jian, L.4
  • 16
    • 84873203970 scopus 로고    scopus 로고
    • Using unlabelled data for text classification through addition of cluster parameters
    • B. Raskutti, H. L. Ferrá, and A. Kowalczyk. Using unlabelled data for text classification through addition of cluster parameters. In Proc ICML, pages 514-521, 2002.
    • (2002) Proc ICML , pp. 514-521
    • Raskutti, B.1    Ferrá, H.L.2    Kowalczyk, A.3
  • 17
    • 0002442796 scopus 로고    scopus 로고
    • Machine learning in automated text categorization
    • F. Sebastiani. Machine learning in automated text categorization. ACM Comput. Surv., 34(1):1-47, 2002.
    • (2002) ACM Comput. Surv. , vol.34 , Issue.1 , pp. 1-47
    • Sebastiani, F.1
  • 20
    • 84873553818 scopus 로고    scopus 로고
    • Parallel search of k-nearest neighbors with synchronous operations
    • IEEE
    • N. Sismanis, N. Pitsianis, and X. Sun. Parallel search of k-nearest neighbors with synchronous operations. In HPEC, pages 1-6. IEEE, 2012.
    • (2012) HPEC , pp. 1-6
    • Sismanis, N.1    Pitsianis, N.2    Sun, X.3
  • 22
    • 0033343146 scopus 로고    scopus 로고
    • Issues in stacked generalization
    • K. M. Ting and I. H. Witten. Issues in stacked generalization. J. Artif. Int. Res., 10(1):271-289, 1999.
    • (1999) J. Artif. Int. Res. , vol.10 , Issue.1 , pp. 271-289
    • Ting, K.M.1    Witten, I.H.2
  • 23
    • 27144441097 scopus 로고    scopus 로고
    • An evaluation of statistical approaches to text categorization
    • Y. Yang. An evaluation of statistical approaches to text categorization. Inf. Ret., 1:69-90, 1999.
    • (1999) Inf. Ret. , vol.1 , pp. 69-90
    • Yang, Y.1
  • 24
    • 84865211737 scopus 로고    scopus 로고
    • Multilabel classification with meta-level features in a learning-to-rank framework
    • Y. Yang and S. Gopal. Multilabel classification with meta-level features in a learning-to-rank framework. Mach. Learn., 88:47-68, 2012.
    • (2012) Mach. Learn. , vol.88 , pp. 47-68
    • Yang, Y.1    Gopal, S.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.