메뉴 건너뛰기




Volumn 9436, Issue , 2015, Pages 395-407

Water quality prediction based on a novel fuzzy time series model and automatic clustering techniques

Author keywords

Automatic clustering algorithm; Fuzzy logical relationship; Fuzzy sets; Fuzzy time series; Water quality prediction

Indexed keywords

FINANCE; FORECASTING; FUZZY LOGIC; FUZZY SETS; PROBABILITY; ROUGH SET THEORY; TIME SERIES; WATER QUALITY;

EID: 84952332907     PISSN: 03029743     EISSN: 16113349     Source Type: Book Series    
DOI: 10.1007/978-3-319-25754-9_35     Document Type: Conference Paper
Times cited : (1)

References (24)
  • 1
    • 77950516820 scopus 로고    scopus 로고
    • A hybrid neural network and ARIMA model for water quality time series prediction
    • Faruk, D. Ö.: A hybrid neural network and ARIMA model for water quality time series prediction. Eng. Appl. Artif. Intell. 23, 586-594 (2010)
    • (2010) Eng. Appl. Artif. Intell , vol.23 , pp. 586-594
    • Faruk, D.Ö.1
  • 2
    • 84905984042 scopus 로고    scopus 로고
    • Random switching exponential smoothing and inventory forecasting
    • Sbrana, G., Silvestrini, A.: Random switching exponential smoothing and inventory forecasting. Int. J. Prod. Econ. 156, 283-294 (2014)
    • (2014) Int. J. Prod. Econ , vol.156 , pp. 283-294
    • Sbrana, G.1    Silvestrini, A.2
  • 4
    • 79960891365 scopus 로고    scopus 로고
    • An efficient self-organizing RBF neural network for water quality prediction
    • Han, H.G., Chen, Q.-L., Qiao, J.-F.: An efficient self-organizing RBF neural network for water quality prediction. Neural Netw. 24, 717-725 (2011)
    • (2011) Neural Netw , vol.24 , pp. 717-725
    • Han, H.G.1    Chen, Q.-L.2    Qiao, J.-F.3
  • 5
    • 0003450542 scopus 로고    scopus 로고
    • Statistics for Engineering and Information Science. Springer-Verlag, New York
    • Vapnik, V.N.: The Nature of Statistical Learning Theory. Statistics for Engineering and Information Science. Springer-Verlag, New York (2000)
    • (2000) The Nature of Statistical Learning Theory
    • Vapnik, V.N.1
  • 7
    • 0000173897 scopus 로고
    • Fuzzy time series and its models
    • Song, Q., Chissom, B.S.: Fuzzy time series and its models. Fuzzy Sets Sys. 54, 269-277 (1993)
    • (1993) Fuzzy Sets Sys , vol.54 , pp. 269-277
    • Song, Q.1    Chissom, B.S.2
  • 8
    • 34248666540 scopus 로고
    • Fuzzy sets
    • Zadeh, L.A.: Fuzzy sets. Inf. Control 8, 338-353 (1965)
    • (1965) Inf. Control , vol.8 , pp. 338-353
    • Zadeh, L.A.1
  • 9
    • 38149147511 scopus 로고
    • Forecasting enrollments with fuzzy time seriespart I
    • Song, Q., Chissom, B.S.: Forecasting enrollments with fuzzy time seriespart I. Fuzzy Sets Sys. 54, 1-9 (1993)
    • (1993) Fuzzy Sets Sys , vol.54 , pp. 1-9
    • Song, Q.1    Chissom, B.S.2
  • 10
    • 38149146997 scopus 로고
    • Forecasting enrollments with fuzzy time seriespart II
    • Song, Q., Chissom, B.S.: Forecasting enrollments with fuzzy time seriespart II. Fuzzy Sets Sys. 62, 1-8 (1994)
    • (1994) Fuzzy Sets Sys , vol.62 , pp. 1-8
    • Song, Q.1    Chissom, B.S.2
  • 11
    • 0001073047 scopus 로고    scopus 로고
    • Forecasting enrollments based on fuzzy time series
    • Chen, S.M.: Forecasting enrollments based on fuzzy time series. Fuzzy Sets Sys. 81, 311-319 (1996)
    • (1996) Fuzzy Sets Sys , vol.81 , pp. 311-319
    • Chen, S.M.1
  • 13
    • 0035502063 scopus 로고    scopus 로고
    • Effective lengths of intervals to improve forecasting in fuzzy time series
    • Huarng, K.: Effective lengths of intervals to improve forecasting in fuzzy time series. Fuzzy Sets Sys. 123, 387-394 (2001)
    • (2001) Fuzzy Sets Sys , vol.123 , pp. 387-394
    • Huarng, K.1
  • 14
    • 0035502048 scopus 로고    scopus 로고
    • Heuristic models of fuzzy time series for forecasting
    • Huarng, K.: Heuristic models of fuzzy time series for forecasting. Fuzzy Sets Sys. 123, 369-386 (2001)
    • (2001) Fuzzy Sets Sys , vol.123 , pp. 369-386
    • Huarng, K.1
  • 15
    • 0036098015 scopus 로고    scopus 로고
    • Forecasting enrollments based on high-order fuzzy time series
    • Chen, S.M.: Forecasting enrollments based on high-order fuzzy time series. Cybern. Sys. 33, 1-16 (2002)
    • (2002) Cybern. Sys , vol.33 , pp. 1-16
    • Chen, S.M.1
  • 16
    • 33745177648 scopus 로고    scopus 로고
    • Handling forecasting problems based on two-factors high-order fuzzy time series
    • Lee, L.W., Wang, L.H., Chen, S.M., Leu, Y.H.: Handling forecasting problems based on two-factors high-order fuzzy time series. IEEE Trans. Fuzzy Sys. 14, 468-477 (2006)
    • (2006) IEEE Trans. Fuzzy Sys , vol.14 , pp. 468-477
    • Lee, L.W.1    Wang, L.H.2    Chen, S.M.3    Leu, Y.H.4
  • 17
    • 67349286437 scopus 로고    scopus 로고
    • Forecasting enrollments using automatic clustering techniques and fuzzy logical relationships
    • Chen, S.M., Wang, N.Y., Pan, J.S.: Forecasting enrollments using automatic clustering techniques and fuzzy logical relationships. Expert Sys. Appl. 36, 11070-11076 (2009)
    • (2009) Expert Sys. Appl , vol.36 , pp. 11070-11076
    • Chen, S.M.1    Wang, N.Y.2    Pan, J.S.3
  • 18
    • 78650706507 scopus 로고    scopus 로고
    • Fuzzy time series prediction using hierarchical clustering algorithms
    • Bang, Y.K., Lee, C.H.: Fuzzy time series prediction using hierarchical clustering algorithms. Expert Sys. Appl. 38, 4312-4325 (2011)
    • (2011) Expert Sys. Appl , vol.38 , pp. 4312-4325
    • Bang, Y.K.1    Lee, C.H.2
  • 19
    • 80052034553 scopus 로고    scopus 로고
    • Fuzzy forecasting based on high-order fuzzy logical relationships and automatic clustering techniques
    • Chen, S.M., Tanuwijaya, K.: Fuzzy forecasting based on high-order fuzzy logical relationships and automatic clustering techniques. Expert Sys. Appl. 38, 15425-15437 (2011)
    • (2011) Expert Sys. Appl , vol.38 , pp. 15425-15437
    • Chen, S.M.1    Tanuwijaya, K.2
  • 20
    • 79953679535 scopus 로고    scopus 로고
    • Multivariate fuzzy forecasting based on fuzzy time series and automatic clustering techniques
    • Chen, S.M., Tanuwijaya, K.: Multivariate fuzzy forecasting based on fuzzy time series and automatic clustering techniques. Expert Sys. Appl. 38, 10594-10605 (2011)
    • (2011) Expert Sys. Appl , vol.38 , pp. 10594-10605
    • Chen, S.M.1    Tanuwijaya, K.2
  • 21
    • 84880922220 scopus 로고    scopus 로고
    • TAIEX forecasting based on fuzzy time series, particle swarm optimization techniques and support vector machines
    • Chen, S.M., Kao, P.Y.: TAIEX forecasting based on fuzzy time series, particle swarm optimization techniques and support vector machines. Inf. Sci. 247, 62-71 (2013)
    • (2013) Inf. Sci , vol.247 , pp. 62-71
    • Chen, S.M.1    Kao, P.Y.2
  • 22
    • 85027921885 scopus 로고    scopus 로고
    • Fuzzy forecasting based on two-factors second-order fuzzy-trend logical relationship groups and the probabilities of trends of fuzzy logical relationships
    • Chen, S.M., Chen, S.W.: Fuzzy forecasting based on two-factors second-order fuzzy-trend logical relationship groups and the probabilities of trends of fuzzy logical relationships. IEEE Trans. Cybern. 45, 405-417 (2015)
    • (2015) IEEE Trans. Cybern , vol.45 , pp. 405-417
    • Chen, S.M.1    Chen, S.W.2
  • 23
    • 84890427180 scopus 로고    scopus 로고
    • Fuzzy forecasting based on two-factors second-order fuzzy-trend logical relationship groups and particle swarm optimization techniques
    • Chen, S.M., Manalu, G.M.T., Pan, J.S., Liu, H.C.: Fuzzy forecasting based on two-factors second-order fuzzy-trend logical relationship groups and particle swarm optimization techniques. IEEE Trans. Cybern. 43, 1102-1117 (2013)
    • (2013) IEEE Trans. Cybern , vol.43 , pp. 1102-1117
    • Chen, S.M.1    Manalu, G.M.T.2    Pan, J.S.3    Liu, H.C.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.