메뉴 건너뛰기




Volumn 216, Issue , 2015, Pages 40-44

Using EHRs and Machine Learning for Heart Failure Survival Analysis

Author keywords

Electronic Health Records; Heart Failure; Machine Learning; Survival Score

Indexed keywords

ARTIFICIAL INTELLIGENCE; BIOINFORMATICS; CARDIOLOGY; DIAGNOSIS; DISEASES; EHEALTH; HEART; LEARNING SYSTEMS; PATIENT TREATMENT; RECORDS MANAGEMENT; RISK ASSESSMENT;

EID: 84952006219     PISSN: 09269630     EISSN: 18798365     Source Type: Book Series    
DOI: 10.3233/978-1-61499-564-7-40     Document Type: Conference Paper
Times cited : (108)

References (15)
  • 1
    • 84887461948 scopus 로고    scopus 로고
    • Risk prediction models for mortality in ambulatory patients with heart failure: A systematic review
    • Sep.
    • Alba AC, Agoritsas T, Jankowski M, et al. Risk Prediction Models for Mortality in Ambulatory Patients with Heart Failure: A Systematic Review. Circulation. Heart failure, vol. 6, no. 5, pp. 881-9, Sep. 2013.
    • (2013) Circulation. Heart Failure , vol.6 , Issue.5 , pp. 881-889
    • Alba, A.C.1    Agoritsas, T.2    Jankowski, M.3
  • 2
    • 84886289237 scopus 로고    scopus 로고
    • Prealbumin. Improves death risk prediction of BNP-added seattle heart failure model: Results from a pilot study in elderly chronic heart failure patients
    • Oct.
    • Cabassi A, Champlain J, Maggiore U, et al. Prealbumin. Improves Death Risk Prediction of BNP-added Seattle Heart Failure Model: Results from a Pilot Study in Elderly Chronic Heart Failure Patients. International Journal of Cardiology, vol. 168, no. 4, pp. 3334-9, Oct. 2013.
    • (2013) International Journal of Cardiology , vol.168 , Issue.4 , pp. 3334-3339
    • Cabassi, A.1    Champlain, J.2    Maggiore, U.3
  • 4
    • 33645827323 scopus 로고    scopus 로고
    • The seattle heart failure model: Prediction of survival in heart failure
    • Mar.
    • Levy WC, Mozaffarian D, Linker DT, et al. The Seattle Heart Failure Model: Prediction of Survival in Heart Failure. Circulation, vol. 113, no. 11, pp. 1424-33, Mar. 2006.
    • (2006) Circulation , vol.113 , Issue.11 , pp. 1424-1433
    • Levy, W.C.1    Mozaffarian, D.2    Linker, D.T.3
  • 5
    • 79952073886 scopus 로고    scopus 로고
    • Influence of predictive modeling in implementing optimal heart failure therapy
    • Mar.
    • Prasad H, Sra J, Levy AC, and Stapleton DD. Influence of Predictive Modeling in Implementing Optimal Heart Failure Therapy. The American Journal of the Medical Sciences, vol. 341, no. 3, pp. 185-90, Mar. 2011.
    • (2011) The American Journal of the Medical Sciences , vol.341 , Issue.3 , pp. 185-190
    • Prasad, H.1    Sra, J.2    Levy, A.C.3    Stapleton, D.D.4
  • 7
    • 84875243337 scopus 로고    scopus 로고
    • Using methods from the data-mining and machine-learning literature for disease classification and prediction: A case study examining classification of heart failure subtypes
    • Austin P C, Tu J V, Ho J E, Levy D, and Lee D S. Using methods from the data-mining and machine-learning literature for disease classification and prediction: A case study examining classification of heart failure subtypes. Journal of Clinical Epidemiology, 66. 4: 398-407, 2013.
    • (2013) Journal of Clinical Epidemiology , vol.66 , Issue.4 , pp. 398-407
    • Austin, P.C.1    Tu, J.V.2    Ho, J.E.3    Levy, D.4    Lee, D.S.5
  • 10
    • 0345040873 scopus 로고    scopus 로고
    • Classification and regression by random forest
    • Liaw A, and Wiener M, Classification and Regression by Random Forest. R news 2. 3: 18-22, 2002.
    • (2002) R News , vol.2 , Issue.3 , pp. 18-22
    • Liaw, A.1    Wiener, M.2
  • 12
    • 84951976767 scopus 로고    scopus 로고
    • A new clinical prediction method using contrast pattern aided logistic regression with application on traumatic brain injury
    • Nov. Best Student Paper Award
    • Taslimitehrani V, Dong G. A new clinical prediction method using contrast pattern aided logistic regression with application on traumatic brain injury. In IEEE International Conference on BioInformatics and BioEngineering (BIBE), Nov 2014. Best Student Paper Award.
    • (2014) IEEE International Conference on BioInformatics and BioEngineering (BIBE)
    • Taslimitehrani, V.1    Dong, G.2
  • 13
    • 0033636139 scopus 로고    scopus 로고
    • Support vector machine classification and validation of cancer tissue samples using microarray expression data
    • Furey TS, et al. Support vector machine classification and validation of cancer tissue samples using microarray expression data. Bioinformatics 16. 10: 906-914, 2000.
    • (2000) Bioinformatics , vol.16 , Issue.10 , pp. 906-914
    • Furey, T.S.1
  • 15
    • 0036643072 scopus 로고    scopus 로고
    • Logistic regression, AdaBoost and Bregman distances
    • Collins M, Schapire RE, and Singer Y. Logistic regression, AdaBoost and Bregman distances. Machine Learning 48. 1-3, 253-285, 2002.
    • (2002) Machine Learning , vol.48 , Issue.1-3 , pp. 253-285
    • Collins, M.1    Schapire, R.E.2    Singer, Y.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.