메뉴 건너뛰기




Volumn 52, Issue , 2016, Pages 332-345

A multiscale image segmentation method

Author keywords

Image segmentation; Multiscale decomposition; Total variation; Variational model

Indexed keywords

FEATURE EXTRACTION; NUMERICAL METHODS;

EID: 84951787250     PISSN: 00313203     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.patcog.2015.10.004     Document Type: Article
Times cited : (32)

References (66)
  • 1
    • 67650394405 scopus 로고    scopus 로고
    • Synergy between object recognition and image segmentation using the expectation-maximization algorithm
    • I. Kokkinos, and P. Maragos Synergy between object recognition and image segmentation using the expectation-maximization algorithm IEEE Trans. Pattern Anal. Mach. Intell. 31 8 2009 1486 1501
    • (2009) IEEE Trans. Pattern Anal. Mach. Intell. , vol.31 , Issue.8 , pp. 1486-1501
    • Kokkinos, I.1    Maragos, P.2
  • 2
    • 82455164336 scopus 로고    scopus 로고
    • Multiband image segmentation and object recognition for understanding road scenes
    • Y. Kang, K. Yamaguchi, T. Naito, and Y. Ninomiya Multiband image segmentation and object recognition for understanding road scenes IEEE Trans. Intell. Transp. Syst. 12 4 2011 1423 1433
    • (2011) IEEE Trans. Intell. Transp. Syst. , vol.12 , Issue.4 , pp. 1423-1433
    • Kang, Y.1    Yamaguchi, K.2    Naito, T.3    Ninomiya, Y.4
  • 3
    • 84875338494 scopus 로고    scopus 로고
    • Fuzzy region competition-based auto-color-theme design for textile images
    • Y. Han, D. Zheng, G. Baciu, X. Feng, and M. Li Fuzzy region competition-based auto-color-theme design for textile images Text. Res. J. 83 6 2013 638 650
    • (2013) Text. Res. J. , vol.83 , Issue.6 , pp. 638-650
    • Han, Y.1    Zheng, D.2    Baciu, G.3    Feng, X.4    Li, M.5
  • 4
    • 84880524369 scopus 로고    scopus 로고
    • Adaptive directional total-variation model for latent fingerprint segmentation
    • J. Zhang, R. Lai, and C.-C. Kuo Adaptive directional total-variation model for latent fingerprint segmentation IEEE Trans. Inf. Forensics Secur. 8 8 2013 1261 1273
    • (2013) IEEE Trans. Inf. Forensics Secur. , vol.8 , Issue.8 , pp. 1261-1273
    • Zhang, J.1    Lai, R.2    Kuo, C.-C.3
  • 5
    • 84971432844 scopus 로고    scopus 로고
    • MR brain image segmentation methods and applications
    • A. Ahmadvand, and M.R. Daliri MR brain image segmentation methods and applications OMICS J. Radiol. 3 2014 2167 7964
    • (2014) OMICS J. Radiol. , vol.3 , pp. 2167-7964
    • Ahmadvand, A.1    Daliri, M.R.2
  • 6
    • 0035248865 scopus 로고    scopus 로고
    • Active contours without edges
    • T. Chan, and L. Vese Active contours without edges IEEE Trans. Image Process. 10 2 2001 266 277
    • (2001) IEEE Trans. Image Process. , vol.10 , Issue.2 , pp. 266-277
    • Chan, T.1    Vese, L.2
  • 7
    • 0036891794 scopus 로고    scopus 로고
    • A multiphase level set framework for image segmentation using the mumford and shah model
    • L. Vese, and T. Chan A multiphase level set framework for image segmentation using the mumford and shah model Int. J. Comput. Vis. 50 3 2002 271 293
    • (2002) Int. J. Comput. Vis. , vol.50 , Issue.3 , pp. 271-293
    • Vese, L.1    Chan, T.2
  • 8
    • 79959576791 scopus 로고    scopus 로고
    • A level set method for image segmentation in the presence of intensity inhomogeneities with application to mri
    • C. Li, R. Huang, Z. Ding, J. Gatenby, D. Metaxas, and J. Gore A level set method for image segmentation in the presence of intensity inhomogeneities with application to mri IEEE Trans. Image Process. 20 7 2011 2007 2016
    • (2011) IEEE Trans. Image Process. , vol.20 , Issue.7 , pp. 2007-2016
    • Li, C.1    Huang, R.2    Ding, Z.3    Gatenby, J.4    Metaxas, D.5    Gore, J.6
  • 9
    • 84862815079 scopus 로고    scopus 로고
    • A local region-based chan-vese model for image segmentation
    • S. Liu, and Y. Peng A local region-based chan-vese model for image segmentation Pattern Recognit. 45 7 2012 2769 2779
    • (2012) Pattern Recognit. , vol.45 , Issue.7 , pp. 2769-2779
    • Liu, S.1    Peng, Y.2
  • 10
    • 74949127654 scopus 로고    scopus 로고
    • Variational segmentation using fuzzy region competition and local non-parametric probability density functions
    • B. Mory, R. Ardon, and J.-P. Thiran Variational segmentation using fuzzy region competition and local non-parametric probability density functions ICCV IEEE 2007 1 8
    • (2007) ICCV IEEE , pp. 1-8
    • Mory, B.1    Ardon, R.2    Thiran, J.-P.3
  • 11
    • 78651593506 scopus 로고    scopus 로고
    • A multiphase image segmentation method based on fuzzy region competition
    • F. Li, M.K. Ng, T. Zeng, and C. Shen A multiphase image segmentation method based on fuzzy region competition SIAM J. Imaging Sci. 3 3 2010 277 299
    • (2010) SIAM J. Imaging Sci. , vol.3 , Issue.3 , pp. 277-299
    • Li, F.1    Ng, M.K.2    Zeng, T.3    Shen, C.4
  • 12
    • 77952677675 scopus 로고    scopus 로고
    • Kernel density estimation based multiphase fuzzy region competition method for texture image segmentation
    • F. Li, and M.K. Ng Kernel density estimation based multiphase fuzzy region competition method for texture image segmentation Commun. Comput. Phys. 8 3 2010 623 641
    • (2010) Commun. Comput. Phys. , vol.8 , Issue.3 , pp. 623-641
    • Li, F.1    Ng, M.K.2
  • 13
    • 79957523117 scopus 로고    scopus 로고
    • Image segmentation using fuzzy region competition and spatial/frequency information
    • S.K. Choy, M.L. Tang, and C.S. Tong Image segmentation using fuzzy region competition and spatial/frequency information IEEE Trans. Image Process. 20 6 2011 1473 1484
    • (2011) IEEE Trans. Image Process. , vol.20 , Issue.6 , pp. 1473-1484
    • Choy, S.K.1    Tang, M.L.2    Tong, C.S.3
  • 14
    • 79957520884 scopus 로고    scopus 로고
    • A fast segmentation method based on constraint optimization and its applications: Intensity inhomogeneity and texture segmentation
    • J. Liu, X. Tai, H. Huang, and Z. Huan A fast segmentation method based on constraint optimization and its applications: intensity inhomogeneity and texture segmentation Pattern Recognit. 44 9 2011 2093 2108
    • (2011) Pattern Recognit. , vol.44 , Issue.9 , pp. 2093-2108
    • Liu, J.1    Tai, X.2    Huang, H.3    Huan, Z.4
  • 15
    • 80052720757 scopus 로고    scopus 로고
    • A new fast multiphase image segmentation algorithm based on nonconvex regularizer
    • Y. Han, W.W. Wang, and X.C. Feng A new fast multiphase image segmentation algorithm based on nonconvex regularizer Pattern Recognit. 45 1 2012 363 372
    • (2012) Pattern Recognit. , vol.45 , Issue.1 , pp. 363-372
    • Han, Y.1    Wang, W.W.2    Feng, X.C.3
  • 16
    • 84883391114 scopus 로고    scopus 로고
    • An efficient algorithm for multiphase image segmentation with intensity bias correction
    • H. Zhang, X. Ye, and Y. Chen An efficient algorithm for multiphase image segmentation with intensity bias correction IEEE Trans. Image Process. 22 10 2013 3842 3851
    • (2013) IEEE Trans. Image Process. , vol.22 , Issue.10 , pp. 3842-3851
    • Zhang, H.1    Ye, X.2    Chen, Y.3
  • 17
    • 84990602490 scopus 로고
    • Optimal approximation by piecewise smooth function and associated variational problems
    • D. Mumford, and J. Shah Optimal approximation by piecewise smooth function and associated variational problems Commun. Pure Appl. Math. 42 1989 577 685
    • (1989) Commun. Pure Appl. Math. , vol.42 , pp. 577-685
    • Mumford, D.1    Shah, J.2
  • 18
    • 0036566199 scopus 로고    scopus 로고
    • Image segmentation by data-driven Markov chain Monte Carlo
    • Z. Tu, and S. Zhu Image segmentation by data-driven Markov chain Monte Carlo IEEE Trans. Pattern Anal. Mach. Intell. 24 5 2002 657 673
    • (2002) IEEE Trans. Pattern Anal. Mach. Intell. , vol.24 , Issue.5 , pp. 657-673
    • Tu, Z.1    Zhu, S.2
  • 20
    • 36549047468 scopus 로고    scopus 로고
    • Segmentation of color images via reversible jump MCMC sampling
    • Z. Kato Segmentation of color images via reversible jump MCMC sampling Image Vis. Comput. 26 3 2008 361 371
    • (2008) Image Vis. Comput. , vol.26 , Issue.3 , pp. 361-371
    • Kato, Z.1
  • 21
    • 84859081900 scopus 로고    scopus 로고
    • Interactive image segmentation using Dirichlet process multiple-view learning
    • L. Ding, A. Yilmaz, and R. Yan Interactive image segmentation using Dirichlet process multiple-view learning IEEE Trans. Image Process. 21 4 2012 2119 2129
    • (2012) IEEE Trans. Image Process. , vol.21 , Issue.4 , pp. 2119-2129
    • Ding, L.1    Yilmaz, A.2    Yan, R.3
  • 24
    • 79958865964 scopus 로고    scopus 로고
    • Image segmentation by iterated region merging with localized graph cuts
    • B. Peng, L. Zhang, D. Zhang, and J. Yang Image segmentation by iterated region merging with localized graph cuts Pattern Recognit. 44 10-11 2011 2527 2538
    • (2011) Pattern Recognit. , vol.44 , Issue.10-11 , pp. 2527-2538
    • Peng, B.1    Zhang, L.2    Zhang, D.3    Yang, J.4
  • 25
    • 84899052878 scopus 로고    scopus 로고
    • Variational image segmentation models involving non-smooth data-fidelity terms
    • M. Jung, M. Kang, and M. Kang Variational image segmentation models involving non-smooth data-fidelity terms J. Sci. Comput. 59 2 2014 277 308
    • (2014) J. Sci. Comput. , vol.59 , Issue.2 , pp. 277-308
    • Jung, M.1    Kang, M.2    Kang, M.3
  • 27
    • 44049111982 scopus 로고
    • Nonlinear total variation based noise removal algorithms
    • L. Rudin, S. Osher, and E. Fatemi Nonlinear total variation based noise removal algorithms Physica D 60 1992 259 268
    • (1992) Physica D , vol.60 , pp. 259-268
    • Rudin, L.1    Osher, S.2    Fatemi, E.3
  • 28
    • 0347900511 scopus 로고    scopus 로고
    • Modeling textures with total variation minimization and oscillating patterns in image processing
    • L. Vese, and S. Osher Modeling textures with total variation minimization and oscillating patterns in image processing J. Sci. Comput. 19 1 2003 553 572
    • (2003) J. Sci. Comput. , vol.19 , Issue.1 , pp. 553-572
    • Vese, L.1    Osher, S.2
  • 29
    • 33749252638 scopus 로고    scopus 로고
    • Image decomposition and restoration using total variation minimization and the H-1 norm
    • S. Osher, A. Solè, and L. Vese Image decomposition and restoration using total variation minimization and the H-1 norm Multisc. Model. Simul. 1 3 2003 349 370
    • (2003) Multisc. Model. Simul. , vol.1 , Issue.3 , pp. 349-370
    • Osher, S.1    Solè, A.2    Vese, L.3
  • 30
    • 14844355103 scopus 로고    scopus 로고
    • Image decomposition into a bounded variation component and an oscillating component
    • J.-F. Aujol, G. Aubert, L. Blanc-Fèrau, and A. Chambolle Image decomposition into a bounded variation component and an oscillating component J. Math. Imaging Vis. 22 1 2005 71 88
    • (2005) J. Math. Imaging Vis. , vol.22 , Issue.1 , pp. 71-88
    • Aujol, J.-F.1    Aubert, G.2    Blanc-FèRau, L.3    Chambolle, A.4
  • 31
    • 14844353365 scopus 로고    scopus 로고
    • Dual norms and image decomposition models
    • J.-F. Aujol, and A. Chambolle Dual norms and image decomposition models Int. J. Comput. Vis. 63 1 2005 85 104
    • (2005) Int. J. Comput. Vis. , vol.63 , Issue.1 , pp. 85-104
    • Aujol, J.-F.1    Chambolle, A.2
  • 35
    • 41649106710 scopus 로고    scopus 로고
    • The total variation regularized L1 model for multiscale decomposition
    • W.T. Yin, D. Goldfarb, and S. Osher The total variation regularized L1 model for multiscale decomposition SIAM J. Multisc. Model. Simul. 6 1 2007 190 211
    • (2007) SIAM J. Multisc. Model. Simul. , vol.6 , Issue.1 , pp. 190-211
    • Yin, W.T.1    Goldfarb, D.2    Osher, S.3
  • 36
    • 34247608671 scopus 로고    scopus 로고
    • A comparison of three total variation based texture extraction models
    • W.T. Yin, D. Goldfarb, and S. Osher A comparison of three total variation based texture extraction models J. Vis. Commun. Image Represent. 18 3 2007 240 252
    • (2007) J. Vis. Commun. Image Represent. , vol.18 , Issue.3 , pp. 240-252
    • Yin, W.T.1    Goldfarb, D.2    Osher, S.3
  • 38
    • 27844461945 scopus 로고    scopus 로고
    • Aspects of total variation regularized l1 function approximation
    • T. Chan, and S. Esedoglu Aspects of total variation regularized l1 function approximation SIAM J. Appl. Math. 65 5 2005 1817 1837
    • (2005) SIAM J. Appl. Math. , vol.65 , Issue.5 , pp. 1817-1837
    • Chan, T.1    Esedoglu, S.2
  • 40
    • 27744574209 scopus 로고    scopus 로고
    • Image decomposition via the combination of sparse representations and a variational approach
    • J.-L. Starck, M. Elad, and D.L. Donoho Image decomposition via the combination of sparse representations and a variational approach IEEE Trans. Image Process. 14 10 2005 1570 1582
    • (2005) IEEE Trans. Image Process. , vol.14 , Issue.10 , pp. 1570-1582
    • Starck, J.-L.1    Elad, M.2    Donoho, D.L.3
  • 41
    • 37849043947 scopus 로고    scopus 로고
    • Variational image restoration and decomposition with curvelet shrinkage
    • L.L. Jiang, X.C. Feng, and H.Q. Yin Variational image restoration and decomposition with curvelet shrinkage J. Math. Imaging Vis. 30 2 2008 125 132
    • (2008) J. Math. Imaging Vis. , vol.30 , Issue.2 , pp. 125-132
    • Jiang, L.L.1    Feng, X.C.2    Yin, H.Q.3
  • 42
    • 77952744186 scopus 로고    scopus 로고
    • Image decomposition and separation using sparse representations: An overview
    • M.J. Fadili, J.-L. Starck, J. Bobin, and Y. Moudden Image decomposition and separation using sparse representations: an overview Proc. IEEE 2010 983 994
    • (2010) Proc. IEEE , pp. 983-994
    • Fadili, M.J.1    Starck, J.-L.2    Bobin, J.3    Moudden, Y.4
  • 43
    • 80855130391 scopus 로고    scopus 로고
    • Image decomposition via learning the morphological diversity
    • Y.F. Li, and X.C. Feng Image decomposition via learning the morphological diversity Pattern Recognit. Lett. 33 2 2012 111 120
    • (2012) Pattern Recognit. Lett. , vol.33 , Issue.2 , pp. 111-120
    • Li, Y.F.1    Feng, X.C.2
  • 44
    • 84875908349 scopus 로고    scopus 로고
    • A low patch-rank interpretation of texture
    • H. Schaeffer, and S. Osher A low patch-rank interpretation of texture SIAM J. Imaging Sci. 6 1 2013 226 262
    • (2013) SIAM J. Imaging Sci. , vol.6 , Issue.1 , pp. 226-262
    • Schaeffer, H.1    Osher, S.2
  • 45
    • 84893921745 scopus 로고    scopus 로고
    • Cartoon-texture image decomposition using blockwise low-rank texture characterization
    • S. Ono, T. Miyata, and I. Yamada Cartoon-texture image decomposition using blockwise low-rank texture characterization IEEE Trans. Image Process. 23 3 2014 1128 1142
    • (2014) IEEE Trans. Image Process. , vol.23 , Issue.3 , pp. 1128-1142
    • Ono, S.1    Miyata, T.2    Yamada, I.3
  • 48
    • 84875853070 scopus 로고    scopus 로고
    • Coupled variational image decomposition and restoration model for blurred cartoon-plus-texture images with missing pixels
    • M.K. Ng, X. Yuan, and W. Zhang Coupled variational image decomposition and restoration model for blurred cartoon-plus-texture images with missing pixels IEEE Trans. Image Process. 22 6 2013 2233 2246
    • (2013) IEEE Trans. Image Process. , vol.22 , Issue.6 , pp. 2233-2246
    • Ng, M.K.1    Yuan, X.2    Zhang, W.3
  • 49
    • 27844460570 scopus 로고    scopus 로고
    • Simultaneous cartoon and texture image in painting using morphological component analysis
    • M. Elad, J.-L. Starck, P. Querre, and D.L. Donoho Simultaneous cartoon and texture image in painting using morphological component analysis Appl. Comput. Harmonic Anal. 19 3 2005 340 358
    • (2005) Appl. Comput. Harmonic Anal. , vol.19 , Issue.3 , pp. 340-358
    • Elad, M.1    Starck, J.-L.2    Querre, P.3    Donoho, D.L.4
  • 50
    • 77957073977 scopus 로고    scopus 로고
    • Simultaneous cartoon and texture image inpainting
    • J.-F. Cai, R.H. Chan, and Z. Shen Simultaneous cartoon and texture image inpainting Inverse Probl. Imaging 4 3 2010 379 395
    • (2010) Inverse Probl. Imaging , vol.4 , Issue.3 , pp. 379-395
    • Cai, J.-F.1    Chan, R.H.2    Shen, Z.3
  • 52
    • 36348936685 scopus 로고    scopus 로고
    • Sparsity and morphological diversity in blind source separation
    • J. Bobin, J.-L. Starck, M.J. Fadili, and Y. Moudden Sparsity and morphological diversity in blind source separation IEEE Trans. Image Process. 16 11 2007 2662 2674
    • (2007) IEEE Trans. Image Process. , vol.16 , Issue.11 , pp. 2662-2674
    • Bobin, J.1    Starck, J.-L.2    Fadili, M.J.3    Moudden, Y.4
  • 53
  • 54
    • 84881183533 scopus 로고    scopus 로고
    • A survey and comparison of discrete and continuous multi-label optimization approaches for the Potts model
    • C. Nieuwenhuis, E. Töppe, and D. Cremers A survey and comparison of discrete and continuous multi-label optimization approaches for the Potts model Int. J. Comput. Vis. 104 3 2013 223 240
    • (2013) Int. J. Comput. Vis. , vol.104 , Issue.3 , pp. 223-240
    • Nieuwenhuis, C.1    Töppe, E.2    Cremers, D.3
  • 56
    • 84891138843 scopus 로고    scopus 로고
    • Wavelet frame based multi-phase image segmentation
    • C. Tai, X.Q. Zhang, and Z.W. Shen Wavelet frame based multi-phase image segmentation SIAM J. Imaging Sci. 6 4 2013 2521 2546
    • (2013) SIAM J. Imaging Sci. , vol.6 , Issue.4 , pp. 2521-2546
    • Tai, C.1    Zhang, X.Q.2    Shen, Z.W.3
  • 57
    • 24644479273 scopus 로고    scopus 로고
    • Illumination normalization for face recognition and uneven background correction using total variation based image models
    • T. Chen, W.T. Yin, X.S. Zhou, D. Comaniciu, T.S. Huang, Illumination normalization for face recognition and uneven background correction using total variation based image models, in: CVPR, IEEE Computer Society, 2005, pp. 532-539.
    • (2005) CVPR, IEEE Computer Society , pp. 532-539
    • Chen, T.1    Yin, W.T.2    Zhou, X.S.3    Comaniciu, D.4    Huang, T.S.5
  • 58
    • 19544374529 scopus 로고    scopus 로고
    • Background correction for cDNA microarray image using the TV+L1 model
    • W.T. Yin, T. Chen, X.S. Zhou, and A. Chakraborty Background correction for cDNA microarray image using the TV+L1 model Bioinformatics 21 10 2005 2410 2416
    • (2005) Bioinformatics , vol.21 , Issue.10 , pp. 2410-2416
    • Yin, W.T.1    Chen, T.2    Zhou, X.S.3    Chakraborty, A.4
  • 60
    • 1242284980 scopus 로고    scopus 로고
    • A variational approach to remove outliers and impulse noise
    • M. Nikolova A variational approach to remove outliers and impulse noise J. Math. Imaging Vis. 20 1-2 2004 99 120
    • (2004) J. Math. Imaging Vis. , vol.20 , Issue.1-2 , pp. 99-120
    • Nikolova, M.1
  • 61
    • 84969334819 scopus 로고    scopus 로고
    • The split Bregman method for L1-regularized problems
    • T. Goldstein, and S. Osher The split Bregman method for L1-regularized problems SIAM J. Imaging Sci. 2 2 2009 323 343
    • (2009) SIAM J. Imaging Sci. , vol.2 , Issue.2 , pp. 323-343
    • Goldstein, T.1    Osher, S.2
  • 62
    • 69049120535 scopus 로고    scopus 로고
    • Split Bregman algorithm, Douglas-Rachford splitting and frame shrinkage
    • X.-C. Tai, K. Mørken, M. Lysaker, K.-A. Lie, Springer
    • S. Setzer Split Bregman algorithm, Douglas-Rachford splitting and frame shrinkage X.-C. Tai, K. Mørken, M. Lysaker, K.-A. Lie, SSVM, Lecture Notes in Computer Science, Springer vol. 5567 2009 Springer 464 476
    • (2009) SSVM, Lecture Notes in Computer Science, Springer , vol.5567 , pp. 464-476
    • Setzer, S.1
  • 63
    • 1242352408 scopus 로고    scopus 로고
    • An algorithm for total variation minimization and applications
    • A. Chambolle An algorithm for total variation minimization and applications J. Math. Imaging Vis. 20 1-2 2004 89 97
    • (2004) J. Math. Imaging Vis. , vol.20 , Issue.1-2 , pp. 89-97
    • Chambolle, A.1
  • 64
    • 79951847467 scopus 로고    scopus 로고
    • Total variation projection with first order schemes
    • J.M. Fadili, and G. Peyre Total variation projection with first order schemes IEEE Trans. Image Process. 20 3 2011 657 669
    • (2011) IEEE Trans. Image Process. , vol.20 , Issue.3 , pp. 657-669
    • Fadili, J.M.1    Peyre, G.2
  • 65
    • 0026398342 scopus 로고
    • Unsupervised texture segmentation using Gabor filters
    • A.K. Jain, and F. Farrokhnia Unsupervised texture segmentation using Gabor filters Pattern Recognit. 24 12 1991 1167 1186
    • (1991) Pattern Recognit. , vol.24 , Issue.12 , pp. 1167-1186
    • Jain, A.K.1    Farrokhnia, F.2
  • 66
    • 0034239566 scopus 로고    scopus 로고
    • Alternating direction method with self-adaptive penalty parameters for monotone variational inequalities
    • B.S. He, H. Yang, and S.L. Wang Alternating direction method with self-adaptive penalty parameters for monotone variational inequalities J. Optim. Theory Appl. 106 2 2000 337 356
    • (2000) J. Optim. Theory Appl. , vol.106 , Issue.2 , pp. 337-356
    • He, B.S.1    Yang, H.2    Wang, S.L.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.