메뉴 건너뛰기




Volumn 8, Issue 11, 2015, Pages 12776-12794

Sanitation and analysis of operation data in energy systems

Author keywords

Adsorption chillers; Data sanitation workflow; First principle; K means clustering; Machine learning; Outlier detection; Z score normalization

Indexed keywords

ARTIFICIAL INTELLIGENCE; COOLING SYSTEMS; DATA HANDLING; ENERGY EFFICIENCY; LEARNING ALGORITHMS; LEARNING SYSTEMS; QUALITY CONTROL; RELIABILITY ANALYSIS; SANITATION; STATISTICS;

EID: 84950258161     PISSN: None     EISSN: 19961073     Source Type: Journal    
DOI: 10.3390/en81112337     Document Type: Article
Times cited : (10)

References (29)
  • 1
    • 85029891326 scopus 로고    scopus 로고
    • (accessed on 13 October 2015)
    • XAMControl. Available online: http://www.evon-automation.com/index.php/en/products/xamcontrol (accessed on 13 October 2015).
  • 2
    • 85029827257 scopus 로고    scopus 로고
    • (accessed on 13 October 2015)
    • Enterprise Building Integrator (EBI). Available online: https://www.ebi.honeywell.com/en-US/Pages/homepage.aspx (accessed on 13 October 2015).
  • 3
    • 85029865070 scopus 로고    scopus 로고
    • (accessed on 13 October 2015)
    • Desigo CC-Building Technologies-Siemens. Available online: http://www.buildingtechnologies.siemens.com/bt/global/en/building-solutions/desigo-cc/Pages/desigo-cc.aspx (accessed on 13 October 2015).
  • 4
    • 0036210172 scopus 로고    scopus 로고
    • A method for automatic validation of long time series of data in urban hydrology
    • Mourad, M.; Bertrand-Krajewski, J.-L. A method for automatic validation of long time series of data in urban hydrology. Water Sci. Technol. 2002, 45, 263-270.
    • (2002) Water Sci. Technol , vol.45 , pp. 263-270
    • Mourad, M.1    Bertrand-Krajewski, J.-L.2
  • 7
    • 84893638849 scopus 로고    scopus 로고
    • EN 15316 Calculation Methods for the Generation Sub-System: The Influence of Input Data on the Results
    • Mattarelli, A.; Piva, S. EN 15316 Calculation Methods for the Generation Sub-System: The Influence of Input Data on the Results. Energy Proc. 2014, 45, 473-481.
    • (2014) Energy Proc , vol.45 , pp. 473-481
    • Mattarelli, A.1    Piva, S.2
  • 9
    • 79959797644 scopus 로고    scopus 로고
    • Improved real-time data anomaly detection using context classification
    • Branisavljević, N.; Kapelan, Z.; Prodanović, D. Improved real-time data anomaly detection using context classification. J. Hydroinformatics 2011, 13, 307-323.
    • (2011) J. Hydroinformatics , vol.13 , pp. 307-323
    • Branisavljević, N.1    Kapelan, Z.2    Prodanović, D.3
  • 11
    • 14544268558 scopus 로고    scopus 로고
    • Review Article: Methods for Fault Detection, Diagnostics, and Prognostics for Building Systems-A Review, Part I
    • Katipamula, S.; Brambley, M.R. Review Article: Methods for Fault Detection, Diagnostics, and Prognostics for Building Systems-A Review, Part I. HVACR Res. 2005, 11, 3-25.
    • (2005) HVACR Res , vol.11 , pp. 3-25
    • Katipamula, S.1    Brambley, M.R.2
  • 12
    • 84899701114 scopus 로고    scopus 로고
    • Development of prediction models for next-day building energy consumption and peak power demand using data mining techniques
    • Fan, C.; Xiao, F.; Wang, S. Development of prediction models for next-day building energy consumption and peak power demand using data mining techniques. Appl. Energy 2014, 127.
    • (2014) Appl. Energy , pp. 127
    • Fan, C.1    Xiao, F.2    Wang, S.3
  • 13
    • 0002283033 scopus 로고    scopus 로고
    • From data mining to knowledge discovery in databases
    • Fayyad, U.; Piatetsky-Shapiro, G.; Smyth, P. From data mining to knowledge discovery in databases. AI Mag. 1996, 17, 37.
    • (1996) AI Mag , vol.17 , pp. 37
    • Fayyad, U.1    Piatetsky-Shapiro, G.2    Smyth, P.3
  • 14
    • 79953222131 scopus 로고    scopus 로고
    • Cross-level fault detection and diagnosis of building HVAC systems
    • Wu, S.; Sun, J.-Q. Cross-level fault detection and diagnosis of building HVAC systems. Build. Environ. 2011, 46, 1558-1566.
    • (2011) Build. Environ , vol.46 , pp. 1558-1566
    • Wu, S.1    Sun, J.-Q.2
  • 15
    • 33748442297 scopus 로고    scopus 로고
    • A rule-based fault detection method for air handling units
    • Schein, J.; Bushby, S.T.; Castro, N.S.; House, J.M. A rule-based fault detection method for air handling units. Energy Build. 2006, 38, 1485-1492.
    • (2006) Energy Build , vol.38 , pp. 1485-1492
    • Schein, J.1    Bushby, S.T.2    Castro, N.S.3    House, J.M.4
  • 16
    • 84857063430 scopus 로고    scopus 로고
    • A novel methodology for knowledge discovery through mining associations between building operational data
    • Yu, Z.J.; Haghighat, F.; Fung, B.C.; Zhou, L. A novel methodology for knowledge discovery through mining associations between building operational data. Energy Build. 2012, 47, 430-440.
    • (2012) Energy Build , vol.47 , pp. 430-440
    • Yu, Z.J.1    Haghighat, F.2    Fung, B.C.3    Zhou, L.4
  • 18
    • 82155186706 scopus 로고    scopus 로고
    • Improved energy management of chiller systems by multivariate and data envelopment analyses
    • Yu, F.W.; Chan, K.T. Improved energy management of chiller systems by multivariate and data envelopment analyses. Appl. Energy 2012, 92, 168-174.
    • (2012) Appl. Energy , vol.92 , pp. 168-174
    • Yu, F.W.1    Chan, K.T.2
  • 19
    • 84899526752 scopus 로고    scopus 로고
    • Data and analytics to inform energy retrofit of high performance buildings
    • Hong, T.; Yang, L.; Hill, D.; Feng, W. Data and analytics to inform energy retrofit of high performance buildings. Appl. Energy 2014, 126, 90-106.
    • (2014) Appl. Energy , vol.126 , pp. 90-106
    • Hong, T.1    Yang, L.2    Hill, D.3    Feng, W.4
  • 20
    • 0001138328 scopus 로고
    • Algorithm AS 136: A k-means clustering algorithm
    • Hartigan, J.A.; Wong, M.A. Algorithm AS 136: A k-means clustering algorithm. Appl. Stat. 1979, 28, 100-108.
    • (1979) Appl. Stat , vol.28 , pp. 100-108
    • Hartigan, J.A.1    Wong, M.A.2
  • 21
    • 0020102027 scopus 로고
    • Least squares quantization in PCM
    • Lloyd, S. Least squares quantization in PCM. IEEE Trans. Inf. Theory 1982, 28, 129-137.
    • (1982) IEEE Trans. Inf. Theory , vol.28 , pp. 129-137
    • Lloyd, S.1
  • 22
    • 77950369345 scopus 로고    scopus 로고
    • Data clustering: 50 years beyond K-means
    • Jain, A.K. Data clustering: 50 years beyond K-means. Pattern Recognit. Lett. 2010, 31, 651-666.
    • (2010) Pattern Recognit. Lett , vol.31 , pp. 651-666
    • Jain, A.K.1
  • 24
    • 84903731950 scopus 로고    scopus 로고
    • Claude, S., Webb, G.I., Eds.; Springer US: New York, NY, USA
    • Jin, X.; Han, J. Encyclopedia of Machine Learning; Claude, S., Webb, G.I., Eds.; Springer US: New York, NY, USA, 2011; pp. 382-383.
    • (2011) Encyclopedia of Machine Learning , pp. 382-383
    • Jin, X.1    Han, J.2
  • 25
    • 0001942153 scopus 로고    scopus 로고
    • Model selection for probabilistic clustering using cross-validated likelihood
    • Smyth, P. Model selection for probabilistic clustering using cross-validated likelihood. Stat. Comput. 2000, 10, 63-72.
    • (2000) Stat. Comput , vol.10 , pp. 63-72
    • Smyth, P.1
  • 29
    • 70649114543 scopus 로고    scopus 로고
    • Conditional Density Estimation with Class Probability Estimators
    • Zhou, Z.-H., Washio, T., Eds.; Springer: Berlin, Germany
    • Frank, E.; Bouckaert, R.R. Conditional Density Estimation with Class Probability Estimators. In Advances in Machine Learning; Zhou, Z.-H., Washio, T., Eds.; Springer: Berlin, Germany, 2009; pp. 65-81.
    • (2009) Advances in Machine Learning , pp. 65-81
    • Frank, E.1    Bouckaert, R.R.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.