메뉴 건너뛰기




Volumn 164, Issue , 2016, Pages 21-27

Design analysis of supercritical carbon dioxide recuperator

Author keywords

Effectiveness; Entransy dissipation number; Heat capacity rate ratio; Heat exchanger; Heat transfer; Supercritical carbon dioxide (S CO2)

Indexed keywords

DESIGN; HEAT EXCHANGERS; HEAT FLUX; HEAT TRANSFER; RECUPERATORS; SPECIFIC HEAT; SUPERCRITICAL FLUID EXTRACTION;

EID: 84949895044     PISSN: 03062619     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.apenergy.2015.11.049     Document Type: Article
Times cited : (103)

References (29)
  • 2
    • 84888122901 scopus 로고    scopus 로고
    • Thermodynamic study of advanced supercritical carbon dioxide power cycles for concentrating solar power systems
    • Turchi C.S., Ma Z., Neises T.W., Wagner M.J. Thermodynamic study of advanced supercritical carbon dioxide power cycles for concentrating solar power systems. J Sol Energy Eng 2013, 135:041007.
    • (2013) J Sol Energy Eng , vol.135 , pp. 041007
    • Turchi, C.S.1    Ma, Z.2    Neises, T.W.3    Wagner, M.J.4
  • 5
    • 73149124052 scopus 로고    scopus 로고
    • 2 power cycle using genetic algorithm and artificial neural network
    • 2 power cycle using genetic algorithm and artificial neural network. Appl Energy 2010, 87:1317-1324.
    • (2010) Appl Energy , vol.87 , pp. 1317-1324
    • Wang, J.F.1    Sun, Z.X.2    Dai, Y.P.3    Ma, S.L.4
  • 8
    • 84905014737 scopus 로고    scopus 로고
    • Design considerations for supercritical carbon dioxide Brayton cycles with recompression
    • Dyreby J., Klein S., Nellis G., Reindl D. Design considerations for supercritical carbon dioxide Brayton cycles with recompression. J Eng Gas Turbines Power 2014, 136:101701.
    • (2014) J Eng Gas Turbines Power , vol.136 , pp. 101701
    • Dyreby, J.1    Klein, S.2    Nellis, G.3    Reindl, D.4
  • 9
    • 10244275479 scopus 로고    scopus 로고
    • A supercritical carbon dioxide cycle for next generation nuclear reactors
    • MIT-ANP-TR-100
    • Dostal V, Driscoll MJ, Hejzlar P. A supercritical carbon dioxide cycle for next generation nuclear reactors. MIT-ANP-TR-100; 2004.
    • (2004)
    • Dostal, V.1    Driscoll, M.J.2    Hejzlar, P.3
  • 10
    • 84928471828 scopus 로고    scopus 로고
    • 2 Rankine cycle for low-grade heat conversion
    • 2 Rankine cycle for low-grade heat conversion. Renew Sustain Energy Rev 2015, 48:434-451.
    • (2015) Renew Sustain Energy Rev , vol.48 , pp. 434-451
    • Sarkar, J.1
  • 11
    • 84898662863 scopus 로고    scopus 로고
    • Experimental analysis of heat transfer of supercritical fluids in plate heat exchangers
    • Forooghi P., Hooman K. Experimental analysis of heat transfer of supercritical fluids in plate heat exchangers. Int J Heat Mass Transfer 2014, 74:448-459.
    • (2014) Int J Heat Mass Transfer , vol.74 , pp. 448-459
    • Forooghi, P.1    Hooman, K.2
  • 12
    • 84862741305 scopus 로고    scopus 로고
    • Supercritical carbon dioxide heat transfer in horizontal semicircular channels
    • Kruizenga A., Li H., Anderson M., Corradini M. Supercritical carbon dioxide heat transfer in horizontal semicircular channels. J Heat Transfer 2012, 134:081802.
    • (2012) J Heat Transfer , vol.134 , pp. 081802
    • Kruizenga, A.1    Li, H.2    Anderson, M.3    Corradini, M.4
  • 15
    • 84906342455 scopus 로고    scopus 로고
    • Transient analysis of subcritical/supercritical carbon dioxide based natural circulation loops with end heat exchangers: numerical studies
    • Yadav A.K., Ram Gopal M., Bhattacharyya S. Transient analysis of subcritical/supercritical carbon dioxide based natural circulation loops with end heat exchangers: numerical studies. Int J Heat Mass Transfer 2014, 79:24-33.
    • (2014) Int J Heat Mass Transfer , vol.79 , pp. 24-33
    • Yadav, A.K.1    Ram Gopal, M.2    Bhattacharyya, S.3
  • 18
    • 84924701086 scopus 로고    scopus 로고
    • Development of a solar receiver based on compact heat exchanger technology for supercritical carbon dioxide power cycles
    • Besarati S.M., Yogi Goswami D., Stefanakos E.K. Development of a solar receiver based on compact heat exchanger technology for supercritical carbon dioxide power cycles. J Sol Energy Eng 2015, 137:031018.
    • (2015) J Sol Energy Eng , vol.137 , pp. 031018
    • Besarati, S.M.1    Yogi Goswami, D.2    Stefanakos, E.K.3
  • 19
    • 84928537339 scopus 로고    scopus 로고
    • Numerical analysis of air-foil shaped fin performance in printed circuit heat exchanger in a supercritical carbon dioxide power cycle
    • Kim T.H., Kwon J.G., Yoon S.H., Park H.S., Kim M.H., Cha J.E. Numerical analysis of air-foil shaped fin performance in printed circuit heat exchanger in a supercritical carbon dioxide power cycle. Nucl Eng Des 2015, 288:110-118.
    • (2015) Nucl Eng Des , vol.288 , pp. 110-118
    • Kim, T.H.1    Kwon, J.G.2    Yoon, S.H.3    Park, H.S.4    Kim, M.H.5    Cha, J.E.6
  • 20
    • 33947720528 scopus 로고    scopus 로고
    • Entransy - a physical quantity describing heat transfer ability
    • Guo Z.Y., Zhu H.Y., Liang X.G. Entransy - a physical quantity describing heat transfer ability. Int J Heat Mass Transfer 2007, 50:2545-2556.
    • (2007) Int J Heat Mass Transfer , vol.50 , pp. 2545-2556
    • Guo, Z.Y.1    Zhu, H.Y.2    Liang, X.G.3
  • 21
    • 70350729857 scopus 로고    scopus 로고
    • Cambridge University Press, New York
    • Nellis G., Klein S. Heat transfer 2008, Cambridge University Press, New York.
    • (2008) Heat transfer
    • Nellis, G.1    Klein, S.2
  • 22
    • 77949914132 scopus 로고    scopus 로고
    • Effectiveness-thermal resistance method for heat exchanger design and analysis
    • Guo Z.Y., Liu X.B., Tao W.Q., Shah R.K. Effectiveness-thermal resistance method for heat exchanger design and analysis. Int J Heat Mass Transfer 2010, 53:2877-2884.
    • (2010) Int J Heat Mass Transfer , vol.53 , pp. 2877-2884
    • Guo, Z.Y.1    Liu, X.B.2    Tao, W.Q.3    Shah, R.K.4
  • 23
    • 84888432596 scopus 로고    scopus 로고
    • Multi-objective optimization of heat exchanger based on entransy dissipation theory in an irreversible Brayton cycle system
    • Guo J.F., Huai X., Li X., Cai J., Wang Y. Multi-objective optimization of heat exchanger based on entransy dissipation theory in an irreversible Brayton cycle system. Energy 2013, 63:95-102.
    • (2013) Energy , vol.63 , pp. 95-102
    • Guo, J.F.1    Huai, X.2    Li, X.3    Cai, J.4    Wang, Y.5
  • 24
    • 84855745688 scopus 로고    scopus 로고
    • The application of entransy dissipation theory in optimization design of heat exchanger
    • Guo J.F., Xu M. The application of entransy dissipation theory in optimization design of heat exchanger. Appl Therm Eng 2012, 36:227-235.
    • (2012) Appl Therm Eng , vol.36 , pp. 227-235
    • Guo, J.F.1    Xu, M.2
  • 25
    • 70349418577 scopus 로고    scopus 로고
    • Entransy dissipation number and its application to heat exchanger performance evaluation
    • Guo J.F., Cheng L., Xu M. Entransy dissipation number and its application to heat exchanger performance evaluation. Chin Sci Bull 2009, 54:2708-2713.
    • (2009) Chin Sci Bull , vol.54 , pp. 2708-2713
    • Guo, J.F.1    Cheng, L.2    Xu, M.3
  • 27
    • 61849130187 scopus 로고    scopus 로고
    • Analysis of a carbon dioxide transcritical power cycle using a low temperature source
    • Cayer E., Galanis N., Desilets M., Nesreddine H., Roy P. Analysis of a carbon dioxide transcritical power cycle using a low temperature source. Appl Energy 2009, 86:1055-1063.
    • (2009) Appl Energy , vol.86 , pp. 1055-1063
    • Cayer, E.1    Galanis, N.2    Desilets, M.3    Nesreddine, H.4    Roy, P.5
  • 28
    • 73349126094 scopus 로고    scopus 로고
    • Parametric study and optimization of a transcritical power cycle using a low temperature source
    • Cayer E., Galanis N., Nesreddine H. Parametric study and optimization of a transcritical power cycle using a low temperature source. Appl Energy 2010, 87:1349-1357.
    • (2010) Appl Energy , vol.87 , pp. 1349-1357
    • Cayer, E.1    Galanis, N.2    Nesreddine, H.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.