메뉴 건너뛰기




Volumn 9047, Issue , 2015, Pages 424-431

Random projection towards the Baire metric for high dimensional clustering

Author keywords

Big data; Binary rooted tree; Computational complexity; Hierarchical clustering; Ultrametric topology

Indexed keywords

BINARY TREES; COMPUTATIONAL COMPLEXITY; TREES (MATHEMATICS);

EID: 84949776887     PISSN: 03029743     EISSN: 16113349     Source Type: Book Series    
DOI: 10.1007/978-3-319-17091-6_37     Document Type: Conference Paper
Times cited : (11)

References (23)
  • 1
    • 0038166193 scopus 로고    scopus 로고
    • Database-friendly random projections: Johnson-Lindenstrauss with binary coins
    • Achlioptas, D.: Database-friendly random projections: Johnson-Lindenstrauss with binary coins. Journal of Computer and System Sciences 66(4), 671–687 (2003)
    • (2003) Journal of Computer and System Sciences , vol.66 , Issue.4 , pp. 671-687
    • Achlioptas, D.1
  • 3
    • 84863004563 scopus 로고    scopus 로고
    • Fast, linear time hierarchical clustering using the Baire metric
    • Contreras, P., Murtagh, F.: Fast, linear time hierarchical clustering using the Baire metric. Journal of Classification 29, 118–143 (2012)
    • (2012) Journal of Classification , vol.29 , pp. 118-143
    • Contreras, P.1    Murtagh, F.2
  • 4
    • 0037236821 scopus 로고    scopus 로고
    • An elementary proof of a theorem of Johnson and Lindenstrauss
    • Dasgupta, S., Gupta, A.: An elementary proof of a theorem of Johnson and Lindenstrauss. Random Structures and Algorithms 22(1), 60–65 (2003)
    • (2003) Random Structures and Algorithms , vol.22 , Issue.1 , pp. 60-65
    • Dasgupta, S.1    Gupta, A.2
  • 6
    • 38449115187 scopus 로고    scopus 로고
    • Reducing high-dimensional data by principal component analysis vs. Random projection for nearest neighbor classification
    • IEEE Computer Society, Washington DC
    • Deegalla, S., Boström, H.: Reducing high-dimensional data by principal component analysis vs. random projection for nearest neighbor classification. In: ICMLA 2006: Proceedings of the 5th International Conference on Machine Learning and Applications, pp. 245–250. IEEE Computer Society, Washington DC (2006)
    • (2006) ICMLA 2006: Proceedings of the 5Th International Conference on Machine Learning and Applications , pp. 245-250
    • Deegalla, S.1    Boström, H.2
  • 11
    • 34250085779 scopus 로고
    • Hierarchical trees can be perfectly scaled in one dimension
    • Critchley, F., Heiser, W.: Hierarchical trees can be perfectly scaled in one dimension. Journal of Classification 5, 5–20 (1988)
    • (1988) Journal of Classification , vol.5 , pp. 5-20
    • Critchley, F.1    Heiser, W.2
  • 14
    • 70449100614 scopus 로고    scopus 로고
    • Dimensionality reduction by random projection and latent semantic indexing
    • SIAM, San Francisco
    • Lin, J., Gunopulos, D.: Dimensionality reduction by random projection and latent semantic indexing. In: 3rd SIAM International Conference on Data Mining. SIAM, San Francisco (2003)
    • (2003) 3Rd SIAM International Conference on Data Mining
    • Lin, J.1    Gunopulos, D.2
  • 17
    • 84966728646 scopus 로고    scopus 로고
    • Fast, linear time, m-adic hierarchical clustering for search and retrieval using the Baire metric, with linkages to generalized ultrametrics, hashing, Formal Concept Analysis, and precision of data measurement. P-Adic Numbers
    • Murtagh, F., Contreras, P.: Fast, linear time, m-adic hierarchical clustering for search and retrieval using the Baire metric, with linkages to generalized ultrametrics, hashing, Formal Concept Analysis, and precision of data measurement. p-Adic Numbers, Ultrametric Analysis and Applications 4, 45–56 (2012)
    • (2012) Ultrametric Analysis and Applications , vol.4 , pp. 45-56
    • Murtagh, F.1    Contreras, P.2
  • 18
    • 84949855994 scopus 로고    scopus 로고
    • Linear storage and potentially constant time hierarchical clustering using the Baire metric and random spanning paths
    • Springer (forthcoming
    • Murtagh, F., Contreras, P.: Linear storage and potentially constant time hierarchical clustering using the Baire metric and random spanning paths. In: Proceedings, European Conference on Data Analysis. Springer (forthcoming, 2015)
    • (2015) Proceedings, European Conference on Data Analysis
    • Murtagh, F.1    Contreras, P.2
  • 22
    • 37249018161 scopus 로고    scopus 로고
    • Clustering by random projections
    • In: Perner, P. (ed.), LNCS (LNAI), Springer, Heidelberg
    • Urruty, T., Djeraba, C., Simovici, D.A.: Clustering by random projections. In: Perner, P. (ed.) ICDM2007. LNCS (LNAI), vol. 4597, pp. 107–119. Springer, Heidelberg (2007)
    • (2007) ICDM2007 , vol.4597 , pp. 107-119
    • Urruty, T.1    Djeraba, C.2    Simovici, D.A.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.