-
2
-
-
0003910106
-
Multidimensional clustering algorithms
-
F. Murtagh, “Multidimensional clustering algorithms,” Physica-Verlag (1985).
-
(1985)
Physica-Verla
-
-
Murtagh, F.1
-
3
-
-
17544364135
-
On ultrametricity, data coding, and computation
-
F. Murtagh, “On ultrametricity, data coding, and computation,” J. Classification 21, 167–184 (2004).
-
(2004)
J. Classificatio
, vol.21
, pp. 167-184
-
-
Murtagh, F.1
-
7
-
-
77951903530
-
Mumford dendrograms
-
P. E. Bradley, “Mumford dendrograms,” J. Classification 53, 393–404 (2010).
-
(2010)
J. Classificatio
, vol.53
, pp. 393-404
-
-
Bradley, P.E.1
-
9
-
-
55549116015
-
Hierarchical clustering of massive, high dimensional data sets by exploiting ultrametric embedding
-
F. Murtagh, G. Downs and P. Contreras, “Hierarchical clustering of massive, high dimensional data sets by exploiting ultrametric embedding,” SIAM J. Sci. Computing 30(2), 707–730 (2008).
-
(2008)
SIAM J. Sci. Computin
, vol.30
, Issue.2
, pp. 707-730
-
-
Murtagh, F.1
Downs, G.2
Contreras, P.3
-
10
-
-
0035561610
-
Segmentation of images in p-adic and Euclidean metrics
-
J. Benois-Pineau, A. Yu. Khrennikov and N. V. Kotovich, “Segmentation of images in p-adic and Euclidean metrics,” Dokl. Math. 64, 450–455 (2001).
-
(2001)
Dokl. Math
, vol.64
, pp. 450-455
-
-
Benois-Pineau, J.1
Khrennikov, A.Y.2
Kotovich, N.V.3
-
12
-
-
0035789317
-
Random projection in dimensionality reduction: applications to image and text data
-
ACM, New York, NY:
-
E. Bingham and H. Mannila, “Random projection in dimensionality reduction: applications to image and text data,” Proc. Seventh Int. Conf. on Knowledge Discovery and Data Mining, 245–250 (ACM, New York, NY, 2001).
-
(2001)
Proc. Seventh Int. Conf. on Knowledge Discovery and Data Minin
, pp. 245-250
-
-
Bingham, E.1
Mannila, H.2
-
13
-
-
0001883762
-
Experiments with random projection
-
Morgan Kaufmann Publ., San Francisco, CA:
-
S. Dasgupta, “Experiments with random projection,” Proc. 16th Conf. on Uncertainty in Artificial Intelligence, 143–151 (Morgan Kaufmann Publ., San Francisco, CA, 2000).
-
(2000)
Proc. 16th Conf. on Uncertainty in Artificial Intelligenc
, pp. 143-151
-
-
Dasgupta, S.1
-
14
-
-
38449115187
-
Reducing high-dimensional data by principal component analysis vs. random projection for nearest neighbor classification
-
IEEE Comp. Society, Washington, DC:
-
S. Deegalla and H. Boström, “Reducing high-dimensional data by principal component analysis vs. random projection for nearest neighbor classification,” ICMLA’ 06, Proc. 5th Int. Conf. on Machine Learning and Applications, 245–250 (IEEE Comp. Society, Washington, DC, 2006).
-
(2006)
ICMLA’ 06, Proc. 5th Int. Conf. on Machine Learning and Application
, pp. 245-250
-
-
Deegalla, S.1
Boström, H.2
-
15
-
-
84949855992
-
Random projection for high dimensional data clustering: a cluster ensemble approach
-
AAAI Press, Washington, DC:
-
Xiaoli Zhang Fern and C. Brodly, “Random projection for high dimensional data clustering: a cluster ensemble approach,” Proc. Twentieth Int. Conf. on Machine Learning, (AAAI Press, Washington, DC, 2007).
-
(2007)
Proc. Twentieth Int. Conf. on Machine Learnin
-
-
Fern, X.Z.1
Brodly, C.2
-
16
-
-
63249106662
-
Experiments with random projections formachine learning
-
ACM, New York, NY:
-
D. Fradkin and D. Madigan, “Experiments with random projections formachine learning,” KDD 2003, Proc. Ninth ACM SIGKDD Int. Conf. on Knowledge Discovery and DataMining, 517–522 (ACM, New York, NY, 2003).
-
(2003)
KDD 2003, Proc. Ninth ACM SIGKDD Int. Conf. on Knowledge Discovery and DataMinin
, pp. 517-522
-
-
Fradkin, D.1
Madigan, D.2
-
17
-
-
33749573641
-
Very sparse random projections
-
ACM, New York, NY:
-
P. Li, T. Hastie and K. Church, “Very sparse random projections,” KDD 2006, Proc. 12th ACMSIGKDD Int. Conf. on Knowledge Discovery and Data Mining, 1, 287–296 (ACM, New York, NY, 2006).
-
(2006)
KDD 2006, Proc. 12th ACMSIGKDD Int. Conf. on Knowledge Discovery and Data Minin
, pp. 287-296
-
-
Li, P.1
Hastie, T.2
Church, K.3
-
20
-
-
0001654702
-
Extensions of Lipschitz maps into a Hilbert space
-
W. B. Johnson and J. Lindenstrauss, “Extensions of Lipschitz maps into a Hilbert space,” Contemp. Math. 26, 189–20 (1984).
-
(1984)
Contemp. Math
, vol.26
, pp. 120-189
-
-
Johnson, W.B.1
Lindenstrauss, J.2
-
21
-
-
0037236821
-
An elementary proof of a theorem of Johnson and Lindenstrauss
-
JohnWiley & Sons, Inc., New York:
-
S. Dasgupta and A. Gupta, “An elementary proof of a theorem of Johnson and Lindenstrauss,” Random Struct. & Algorithms 22(1), 60–65, (JohnWiley & Sons, Inc., New York, 2003).
-
(2003)
Random Struct. & Algorithm
, pp. 60-65
-
-
Dasgupta, S.1
Gupta, A.2
-
22
-
-
38249031101
-
The Johnson-Lindenstrauss lemma and the sphericity of some graphs
-
Acad. Press, Inc., Orlando, FL:
-
P. Frankl and H. Maehara, “The Johnson-Lindenstrauss lemma and the sphericity of some graphs,” J. Combin. Theory B 44(3), 355–362 (Acad. Press, Inc., Orlando, FL, 1988).
-
(1988)
J. Combin. Theory
, pp. 355-362
-
-
Frankl, P.1
Maehara, H.2
-
23
-
-
0034819702
-
Database-friendly random projections
-
ACM, New York:
-
D. Achlioptas, “Database-friendly random projections,” PODS’ 01, Proc. Twentieth ACM SIGMODSIGACT-SIGART Symposium on Principles of Database Systems, 274–281 (ACM, New York, 2001).
-
(2001)
PODS’ 01, Proc. Twentieth ACM SIGMODSIGACT-SIGART Symposium on Principles of Database System
, pp. 274-281
-
-
Achlioptas, D.1
-
26
-
-
33244462202
-
Scalable partitioning and exploration of chemical spaces using geometric hashing
-
D. Dutta, R. Guha, P. C. Jurs and Ting Chen, “Scalable partitioning and exploration of chemical spaces using geometric hashing,” J. Chemical Inform. Modeling 46(1), 321–33 (Amer. Chemical Soc., 2006).
-
(2006)
J. Chemical Inform. Modelin
, vol.46
, Issue.1
, pp. 321-333
-
-
Dutta, D.1
Guha, R.2
Jurs, P.C.3
Chen, T.4
-
27
-
-
29344470029
-
Audio fingerprinting: nearest neighbor search in high dimensional binary spaces
-
Kluwer Acad. Publ., Hingham, MA:
-
M. L. Miller, M. Acevedo Rodriguez and I. J. Cox, “Audio fingerprinting: nearest neighbor search in high dimensional binary spaces,” J. VLSI Signal Proc. Systems 41(3), 285–291 (Kluwer Acad. Publ., Hingham, MA, 2005).
-
(2005)
J. VLSI Signal Proc. System
, pp. 285-291
-
-
Miller, M.L.1
Rodriguez, M.A.2
Cox, I.J.3
-
28
-
-
79952194271
-
Satellite image retrieval using low memory locality sensitive hashing in Euclidean space
-
R. Buaba, A. Homaifar, M. Gebril, E. Kihn and M. Zhizhin, “Satellite image retrieval using low memory locality sensitive hashing in Euclidean space,” Earth Sci. Informatics 4, 17–28 (2011).
-
(2011)
Earth Sci. Informatic
, vol.4
, pp. 17-28
-
-
Buaba, R.1
Homaifar, A.2
Gebril, M.3
Kihn, E.4
Zhizhin, M.5
-
29
-
-
84966881603
-
-
Taipei, Taiwan:
-
Pengcheng Wu, S. C.H. Hoi, Nguyen Duc Dung and He Ying, “Randomly projected KD-trees with distance metric learning for image retrieval,” Int. Conf. onMultimediaModeling (MMM2011) (Taipei, Taiwan, 2011).
-
(2011)
“Randomly projected KD-trees with distance metric learning for image retrieval,” Int. Conf. onMultimediaModeling (MMM2011
-
-
Pengcheng, W.1
Hoi, S.C.H.2
Dung, N.D.3
He, Y.4
-
30
-
-
84967343665
-
-
Nearest Neighbor Methods in Learning and Vision: Theory and Practice (MIT Press
-
P. Indyk, A. Andoni, M. Datar, N. Immorlica and V. Mirrokni, “Locally-sensitive hashing using stable distributions,” Ed. by T. Darrell and P. Indyk and G. Shakhnarovich, Nearest Neighbor Methods in Learning and Vision: Theory and Practice (MIT Press, 2006).
-
(2006)
“Locally-sensitive hashing using stable distributions,” Ed. by T. Darrell and P. Indyk and G. Shakhnarovic
-
-
Indyk, P.1
Andoni, A.2
Datar, M.3
Immorlica, N.4
Mirrokni, V.5
-
31
-
-
0034504507
-
Indyk, “Stable distributions, pseudorandom generators, embeddings and data stream computation,” Found
-
Redondo Beach: CA
-
P. Indyk, “Stable distributions, pseudorandom generators, embeddings and data stream computation,” Found. Computer Science FOCS 2000, 189–197 (Redondo Beach, CA, 2000).
-
(2000)
Computer Science FOCS 200
, vol.189-197
-
-
-
32
-
-
20744451888
-
Geometric representation of high dimension, low sample size data
-
P. Hall, J. S. Marron and A. Neeman, “Geometric representation of high dimension, low sample size data,” J. Royal Stat. Society B 67, 427–444 (2005).
-
(2005)
J. Royal Stat. Society
, vol.67
, pp. 427-444
-
-
Hall, P.1
Marron, J.S.2
Neeman, A.3
-
33
-
-
33749573641
-
Very sparse random projections
-
ACM, New York:
-
Ping Li, T. J. Hastie and K. W. Church, “Very sparse random projections,” KDD’06 Proc. of the 12th ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining, 287–296 (ACM, New York, 2006).
-
(2006)
KDD’06 Proc. of the 12th ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Minin
, pp. 287-296
-
-
Li, P.1
Hastie, T.J.2
Church, K.W.3
-
35
-
-
35949015913
-
Ultrametricity for physicists
-
R. Rammal, G. Toulouse and M. A. Virasoro, “Ultrametricity for physicists,” Rev. Mod. Phys. 58(3), 765–788 (Amer. Phys. Soc., 1986).
-
(1986)
Rev. Mod. Phys
, vol.58
, Issue.3
, pp. 765-788
-
-
Rammal, R.1
Toulouse, G.2
Virasoro, M.A.3
-
36
-
-
84967024740
-
Introduction to Lattices and Order(Cambridge Univ
-
B. A. Davey and H. A. Priestley, Introduction to Lattices and Order(Cambridge Univ. Press, 2002).
-
(2002)
Pres
-
-
Davey, B.A.1
Priestley, H.A.2
-
37
-
-
77951912084
-
Generalized distance functions in the theory of computation
-
A. K. Seda and P. Hitzler, “Generalized distance functions in the theory of computation,” Computer J. 53, 443–464 (2010).
-
(2010)
Computer J
, vol.53
, pp. 443-464
-
-
Seda, A.K.1
Hitzler, P.2
-
38
-
-
0040240479
-
An order theoretic model for cluster analysis
-
M. F. Janowitz, “An order theoretic model for cluster analysis,” SIAM J. Appl. Math. 34, 55–72 (1978).
-
(1978)
SIAM J. Appl. Math
, vol.34
, pp. 55-72
-
-
Janowitz, M.F.1
-
40
-
-
0020765701
-
Expected time complexity results for hierarchic clustering algorithms that use cluster centers
-
F. Murtagh, “Expected time complexity results for hierarchic clustering algorithms that use cluster centers,” Information Proc. Lett. 16, 237–241 (1983).
-
(1983)
Information Proc. Lett
, vol.16
, pp. 237-241
-
-
Murtagh, F.1
-
41
-
-
84883402747
-
Using grid-clustering methods in data classification
-
IEEE Computer Soc., Washington, DC:
-
P. Grabusts and A. Borisov, “Using grid-clustering methods in data classification,” PARELEC’ 02, Proc. Int. Conf. on Parallel Computing in Electrical Engineering, pages 425 (IEEE Computer Soc., Washington, DC, 2002).
-
(2002)
PARELEC’ 02, Proc. Int. Conf. on Parallel Computing in Electrical Engineering, pages 42
-
-
Grabusts, P.1
Borisov, A.2
-
42
-
-
0036039291
-
A new cell-based clustering method for large, high-dimensional data in data mining applications
-
ACM, New York:
-
Jae-Woo Chang and Du-Seok Jin, “A new cell-based clustering method for large, high-dimensional data in data mining applications,” SAC’ 02, Proc. 2002 ACM Symposium on Applied Computing, 503–507 (ACM, New York, 2002).
-
(2002)
SAC’ 02, Proc. 2002 ACM Symposium on Applied Computin
, pp. 503-507
-
-
Chang, J.-W.1
Jin, D.-S.2
-
43
-
-
84967153718
-
-
ISBN 9780898716238
-
Guojun Gan, Chaoqun Ma and Jianhong Wu, Data Clustering Theory, Algorithms, and Applications (Soc. Indust. Appl. Math., SIAM, 2007); ISBN 9780898716238.
-
Data Clustering Theory, Algorithms, and Applications (Soc. Indust. Appl. Math., SIAM, 2007
-
-
Gan, G.1
Ma, C.2
Wu, J.3
-
44
-
-
14344255219
-
Statistical grid-based clustering over data streams
-
ACM, New York:
-
Nam Hun Park and Won Suk Lee, “Statistical grid-based clustering over data streams,” SIGMOD Record 33(1), 32–37 (ACM, New York, 2004).
-
(2004)
SIGMOD Recor
, pp. 32-37
-
-
Park, N.H.1
Lee, W.S.2
-
45
-
-
67949110882
-
Clustering (IEEE Comp. Soc
-
Rui Xu and D. C. Wunsch, Clustering (IEEE Comp. Soc. Press, 2008).
-
(2008)
Pres
-
-
Rui, X.1
Wunsch, D.C.2
|