메뉴 건너뛰기




Volumn 10, Issue , 2016, Pages 115-123

Studying depression using imaging and machine learning methods

Author keywords

Depression; Machine learning; Prediction; Review; Treatment

Indexed keywords

AREA UNDER THE CURVE; DIFFUSION TENSOR IMAGING; ELECTROCONVULSIVE THERAPY; FUNCTIONAL MAGNETIC RESONANCE IMAGING; HUMAN; MACHINE LEARNING; MAJOR DEPRESSION; NEUROIMAGING; PRINCIPAL COMPONENT ANALYSIS; PRIORITY JOURNAL; RECEIVER OPERATING CHARACTERISTIC; REVIEW; SAMPLE SIZE; SUPPORT VECTOR MACHINE; BRAIN; COMPUTER ASSISTED DIAGNOSIS; DEPRESSIVE DISORDER, MAJOR; NUCLEAR MAGNETIC RESONANCE IMAGING; PATHOLOGY; PATHOPHYSIOLOGY; PROCEDURES;

EID: 84949505803     PISSN: None     EISSN: 22131582     Source Type: Journal    
DOI: 10.1016/j.nicl.2015.11.003     Document Type: Review
Times cited : (135)

References (59)
  • 2
    • 0037641074 scopus 로고    scopus 로고
    • The epidemiology of major depressive episodes: Results from the International Consortium of Psychiatric Epidemiology (ICPE) Surveys
    • L. Andrade, J.J. Caraveo-Anduaga, P. Berglund, and et al. The epidemiology of major depressive episodes: results from the International Consortium of Psychiatric Epidemiology (ICPE) Surveys Int. J. Methods Psychiatr. Res. 12 2003 3 21
    • (2003) Int. J. Methods Psychiatr. Res. , vol.12 , pp. 3-21
    • Andrade, L.1    Caraveo-Anduaga, J.J.2    Berglund, P.3
  • 3
    • 0033931867 scopus 로고    scopus 로고
    • Assessing the accuracy of prediction algorithms for classification: An overview
    • Pierre Baldi, Søren Brunak, Yves Chauvin, Claus A.F. Andersen, and Henrik Nielsen Assessing the accuracy of prediction algorithms for classification: an overview Bioinformatics 16 5 2000 412 424
    • (2000) Bioinformatics , vol.16 , Issue.5 , pp. 412-424
    • Baldi, P.1    Brunak, Sø.2    Chauvin, Y.3    Andersen, C.A.F.4    Nielsen, H.5
  • 4
    • 84857855190 scopus 로고    scopus 로고
    • Random search for hyper-parameter optimization
    • James Bergstra, and Yoshua Bengio Random search for hyper-parameter optimization J. Mach. Learn. Res. 13 2012 281 305
    • (2012) J. Mach. Learn. Res. , vol.13 , pp. 281-305
    • Bergstra, J.1    Bengio, Y.2
  • 5
    • 33749142522 scopus 로고    scopus 로고
    • Selecting the appropriate machine learning techniques for the prediction of software development costs
    • Springer
    • S. Bibi, and I. Stamelos Selecting the appropriate machine learning techniques for the prediction of software development costs Artificial Intelligence Applications and Innovations 2006 Springer 533 540
    • (2006) Artificial Intelligence Applications and Innovations , pp. 533-540
    • Bibi, S.1    Stamelos, I.2
  • 8
    • 68149169975 scopus 로고    scopus 로고
    • Prognostic and diagnostic potential of the structural neuroanatomy of depression
    • S.G. Costafreda, C. Chu, J. Ashburner, and C.H. Fu Prognostic and diagnostic potential of the structural neuroanatomy of depression PLoS One 4 7 2009 e6353 10.1371/journal.pone.0006353
    • (2009) PLoS One , vol.4 , Issue.7
    • Costafreda, S.G.1    Chu, C.2    Ashburner, J.3    Fu, C.H.4
  • 10
    • 84867539048 scopus 로고    scopus 로고
    • A few useful things to know about machine learning
    • Pedro Domingos A few useful things to know about machine learning Commun. ACM 55 10 2012 78 87
    • (2012) Commun. ACM , vol.55 , Issue.10 , pp. 78-87
    • Domingos, P.1
  • 11
    • 72749118749 scopus 로고    scopus 로고
    • Longitudinal assessment of neuropsychological function in major depression
    • K.M. Douglas, and R.J. Porter Longitudinal assessment of neuropsychological function in major depression Aust. N. Z. J. Psychiatry 43 2009 1105 1117
    • (2009) Aust. N. Z. J. Psychiatry , vol.43 , pp. 1105-1117
    • Douglas, K.M.1    Porter, R.J.2
  • 12
    • 84925300080 scopus 로고    scopus 로고
    • Neuroimaging-based biomarkers for treatment selection in major depressive disorder
    • B.W. Dunlop, and H.S. Mayberg Neuroimaging-based biomarkers for treatment selection in major depressive disorder Dialogues Clin. Neurosci. 16 4 2014 479 490
    • (2014) Dialogues Clin. Neurosci. , vol.16 , Issue.4 , pp. 479-490
    • Dunlop, B.W.1    Mayberg, H.S.2
  • 15
    • 40149084821 scopus 로고    scopus 로고
    • Pattern classification of sad facial processing: Toward the development of neurobiological markers in depression
    • C.H. Fu, J. Mourao-Miranda, S.G. Costafreda, A. Khanna, A.F. Marquand, S.C. Williams, and M.J. Brammer Pattern classification of sad facial processing: toward the development of neurobiological markers in depression Biol. Psychiatry 63 7 2008 656 662 10.1016/j.biopsych.2007.08.020
    • (2008) Biol. Psychiatry , vol.63 , Issue.7 , pp. 656-662
    • Fu, C.H.1    Mourao-Miranda, J.2    Costafreda, S.G.3    Khanna, A.4    Marquand, A.F.5    Williams, S.C.6    Brammer, M.J.7
  • 18
    • 0027760483 scopus 로고
    • Categorization of major depression in an outpatient sample
    • Haslam, and Beck Categorization of major depression in an outpatient sample J. Nerv. Ment. Dis. 181 12 1993 725 731
    • (1993) J. Nerv. Ment. Dis. , vol.181 , Issue.12 , pp. 725-731
    • Haslam1    Beck2
  • 21
    • 4944228528 scopus 로고    scopus 로고
    • A practical guide to support vector classification
    • Department of Computer Science National Taiwan University
    • C. Hsu, C. Chang, and C. Lin A practical guide to support vector classification Tech. rep 2010 Department of Computer Science National Taiwan University
    • (2010) Tech. Rep
    • Hsu, C.1    Chang, C.2    Lin, C.3
  • 22
    • 0031078007 scopus 로고    scopus 로고
    • Feature selection: Evaluation, application, and small sample performance
    • A. Jain, and D. Zongker Feature selection: evaluation, application, and small sample performance IEEE Trans. Pattern Anal. Mach. Intell. 19 2 1997 153 158
    • (1997) IEEE Trans. Pattern Anal. Mach. Intell. , vol.19 , Issue.2 , pp. 153-158
    • Jain, A.1    Zongker, D.2
  • 26
    • 85164392958 scopus 로고
    • A study of cross-validation and bootstrap for accuracy estimation and model selection
    • Ron Kohavi A study of cross-validation and bootstrap for accuracy estimation and model selection Paper Presented at the IJCAI 1995
    • (1995) Paper Presented at the IJCAI
    • Kohavi, R.1
  • 27
    • 33747419508 scopus 로고
    • Automatic parameter selection by minimizing estimated error
    • Ron Kohavi, and George H. John Automatic parameter selection by minimizing estimated error Paper Presented at the ICML 1995
    • (1995) Paper Presented at the ICML
    • Kohavi, R.1    John, G.H.2
  • 28
    • 84865481979 scopus 로고    scopus 로고
    • An evaluation of machine learning in algorithm selection for search problems
    • L. Kotthoff, I.P. Gent, and I. Miguel An evaluation of machine learning in algorithm selection for search problems AI Communications 25 3 2012 257 270
    • (2012) AI Communications , vol.25 , Issue.3 , pp. 257-270
    • Kotthoff, L.1    Gent, I.P.2    Miguel, I.3
  • 29
  • 32
    • 84864004297 scopus 로고    scopus 로고
    • Classification of different therapeutic responses of major depressive disorder with multivariate pattern analysis method based on structural MR scans
    • F. Liu, W. Guo, D. Yu, Q. Gao, K. Gao, and Z. Xue H. Chen Classification of different therapeutic responses of major depressive disorder with multivariate pattern analysis method based on structural MR scans PLoS One 7 7 2012 e40968 10.1371/journal.pone.0040968
    • (2012) PLoS One , vol.7 , Issue.7
    • Liu, F.1    Guo, W.2    Yu, D.3    Gao, Q.4    Gao, K.5    Xue, Z.6    Chen, H.7
  • 33
    • 84886259029 scopus 로고    scopus 로고
    • A review of peripheral biomarkers in major depression: The potential of inflammatory and oxidative stress biomarkers
    • A.L. Lopresti, G.L. Maker, S.D. Hood, and P.D. Drummond A review of peripheral biomarkers in major depression: the potential of inflammatory and oxidative stress biomarkers Biol. Psychiatry 48 3 2014 102 111
    • (2014) Biol. Psychiatry , vol.48 , Issue.3 , pp. 102-111
    • Lopresti, A.L.1    Maker, G.L.2    Hood, S.D.3    Drummond, P.D.4
  • 34
    • 79960549391 scopus 로고    scopus 로고
    • Resting-state functional connectivity in treatment-resistant depression
    • S. Lui, Q. Wu, L. Qiu, and et al. Resting-state functional connectivity in treatment-resistant depression Am. J. Psychiatry 168 2011 642 648
    • (2011) Am. J. Psychiatry , vol.168 , pp. 642-648
    • Lui, S.1    Wu, Q.2    Qiu, L.3
  • 35
    • 53549088324 scopus 로고    scopus 로고
    • Neuroanatomy of verbal working memory as a diagnostic biomarker for depression
    • A.F. Marquand, J. Mourao-Miranda, M.J. Brammer, A.J. Cleare, and C.H. Fu Neuroanatomy of verbal working memory as a diagnostic biomarker for depression Neuroreport 19 15 2008 1507 1511 10.1097/WNR.0b013e328310425e
    • (2008) Neuroreport , vol.19 , Issue.15 , pp. 1507-1511
    • Marquand, A.F.1    Mourao-Miranda, J.2    Brammer, M.J.3    Cleare, A.J.4    Fu, C.H.5
  • 36
    • 8244256653 scopus 로고    scopus 로고
    • Cingulate function in depression: A potential predictor of treatment response
    • H.S. Mayberg, S.K. Brannan, R.K. Mahurin, and et al. Cingulate function in depression: a potential predictor of treatment response Neuroreport 8 1997 1057 1061
    • (1997) Neuroreport , vol.8 , pp. 1057-1061
    • Mayberg, H.S.1    Brannan, S.K.2    Mahurin, R.K.3
  • 39
    • 63449122724 scopus 로고    scopus 로고
    • Inflammation and its discontents: The role of cytokines in the pathophysiology of major depression
    • A.H. Miller, V. Maletic, and C.L. Raison Inflammation and its discontents: the role of cytokines in the pathophysiology of major depression Biol. Psychiatry 65 2009 732 741
    • (2009) Biol. Psychiatry , vol.65 , pp. 732-741
    • Miller, A.H.1    Maletic, V.2    Raison, C.L.3
  • 42
    • 83755174702 scopus 로고    scopus 로고
    • Prediction of illness severity in patients with major depression using structural MR brain scans
    • B. Mwangi, K. Matthews, and J.D. Steele Prediction of illness severity in patients with major depression using structural MR brain scans J. Magn. Reson. Imaging 35 1 2012 64 71 10.1002/jmri.22806
    • (2012) J. Magn. Reson. Imaging , vol.35 , Issue.1 , pp. 64-71
    • Mwangi, B.1    Matthews, K.2    Steele, J.D.3
  • 43
    • 84904543207 scopus 로고    scopus 로고
    • A review of feature reduction techniques in neuroimaging
    • Benson Mwangi, Tian Siva Tian, and Jair C. Soares A review of feature reduction techniques in neuroimaging Neuroinformatics 1-16 2013
    • (2013) Neuroinformatics , vol.1-16
    • Mwangi, B.1    Tian, T.S.2    Soares, J.C.3
  • 44
    • 79954987179 scopus 로고    scopus 로고
    • Machine learning classification with confidence: Application of transductive conformal predictors to MRI-based diagnostic and prognostic markers in depression
    • I. Nouretdinov, S.G. Costafreda, A. Gammerman, A. Chervonenkis, V. Vovk, V. Vapnik, and C.H. Fu Machine learning classification with confidence: application of transductive conformal predictors to MRI-based diagnostic and prognostic markers in depression Neuroimage 56 2 2011 809 813 10.1016/j.neuroimage.2010.05.023
    • (2011) Neuroimage , vol.56 , Issue.2 , pp. 809-813
    • Nouretdinov, I.1    Costafreda, S.G.2    Gammerman, A.3    Chervonenkis, A.4    Vovk, V.5    Vapnik, V.6    Fu, C.H.7
  • 45
    • 27144439629 scopus 로고    scopus 로고
    • Sample size and subject to item ratio in principal components analysis
    • J.W. Osborne, and A.B. Costello Sample size and subject to item ratio in principal components analysis Pract. Assess. Res. Eval. 9 11 2004
    • (2004) Pract. Assess. Res. Eval. , vol.9 , Issue.11
    • Osborne, J.W.1    Costello, A.B.2
  • 46
    • 72549099783 scopus 로고    scopus 로고
    • Managing partial response or nonresponse: Switching, augmentation, and combination strategies for major depressive disorder
    • G.I. Papakostas Managing partial response or nonresponse: switching, augmentation, and combination strategies for major depressive disorder J. Clin. Psychol. 70 Suppl. 6 2009 16 25
    • (2009) J. Clin. Psychol. , vol.70 , pp. 16-25
    • Papakostas, G.I.1
  • 47
    • 84941802558 scopus 로고    scopus 로고
    • Machine learning approaches for integrating clinical and imaging features in late-life depression classification and response prediction
    • M.J. Patel, C. Andreescu, J.C. Price, K.L. Edelman, C.F. Reynolds, and H.J. Aizenstein Machine learning approaches for integrating clinical and imaging features in late-life depression classification and response prediction Int. J. Geriatr. Psychiatry 30 10 2015 1056 1067
    • (2015) Int. J. Geriatr. Psychiatry , vol.30 , Issue.10 , pp. 1056-1067
    • Patel, M.J.1    Andreescu, C.2    Price, J.C.3    Edelman, K.L.4    Reynolds, C.F.5    Aizenstein, H.J.6
  • 48
    • 0026120032 scopus 로고
    • Small sample size effects in statistical pattern recognition: Recommendations for practitioners
    • S.J. Raudys, and A.K. Jain Small sample size effects in statistical pattern recognition: recommendations for practitioners IEEE Trans. Pattern Anal. Mach. Intell. 13 3 1991 252 264
    • (1991) IEEE Trans. Pattern Anal. Mach. Intell. , vol.13 , Issue.3 , pp. 252-264
    • Raudys, S.J.1    Jain, A.K.2
  • 50
    • 84891632626 scopus 로고    scopus 로고
    • Efficient feature size reduction via predictive forward selection
    • Matthias Reif, and Faisal Shafait Efficient feature size reduction via predictive forward selection Pattern Recogn. 47 4 2014 1664 1673
    • (2014) Pattern Recogn. , vol.47 , Issue.4 , pp. 1664-1673
    • Reif, M.1    Shafait, F.2
  • 53
    • 68449101172 scopus 로고    scopus 로고
    • Artificial neural network model for the prediction of obsessive-compulsive disorder treatment response
    • G. Salomoni, M. Grassi, P. Mosini, P. Riva, P. Cavedini, and L. Bellodi Artificial neural network model for the prediction of obsessive-compulsive disorder treatment response J. Clin. Psychopharmacol. 29 2009 343 349 10.1097/JCP.0b013e3181aba68f
    • (2009) J. Clin. Psychopharmacol. , vol.29 , pp. 343-349
    • Salomoni, G.1    Grassi, M.2    Mosini, P.3    Riva, P.4    Cavedini, P.5    Bellodi, L.6
  • 55
    • 79960679208 scopus 로고    scopus 로고
    • Structural integrity of the uncinate fasciculus and resting state functional connectivity of the ventral prefrontal cortex in late life depression
    • D.C. Steffens, W.D. Taylor, K.L. Denny, S.R. Bergman, and L. Wang Structural integrity of the uncinate fasciculus and resting state functional connectivity of the ventral prefrontal cortex in late life depression PLoS One 6 2011 e22697
    • (2011) PLoS One , vol.6
    • Steffens, D.C.1    Taylor, W.D.2    Denny, K.L.3    Bergman, S.R.4    Wang, L.5
  • 56
    • 84925296177 scopus 로고    scopus 로고
    • Using biomarkers to predict treatment response in major depressive disorder: Evidence from past and present studies
    • M. Thase Using biomarkers to predict treatment response in major depressive disorder: evidence from past and present studies Dialogues Clin. Neurosci. 16 4 2014 539 544
    • (2014) Dialogues Clin. Neurosci. , vol.16 , Issue.4 , pp. 539-544
    • Thase, M.1
  • 59
    • 84860631276 scopus 로고    scopus 로고
    • Identifying major depression using whole-brain functional connectivity: A multivariate pattern analysis
    • L.L. Zeng, H. Shen, L. Liu, L. Wang, B. Li, and P. Fang D. Hu Identifying major depression using whole-brain functional connectivity: a multivariate pattern analysis Brain 135 Pt 5 2012 1498 1507 10.1093/brain/aws059
    • (2012) Brain , vol.135 , pp. 1498-1507
    • Zeng, L.L.1    Shen, H.2    Liu, L.3    Wang, L.4    Li, B.5    Fang, P.6    Hu, D.7


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.