메뉴 건너뛰기




Volumn 1532, Issue , 1998, Pages 25-39

The computer-aided discovery of scientific knowledge

Author keywords

[No Author keywords available]

Indexed keywords

COMPUTER SCIENCE; COMPUTERS;

EID: 84949200339     PISSN: 03029743     EISSN: 16113349     Source Type: Book Series    
DOI: 10.1007/3-540-49292-5_3     Document Type: Conference Paper
Times cited : (22)

References (37)
  • 1
    • 0032510490 scopus 로고    scopus 로고
    • Oxidative carbonylation of phenylacetylene catalyzed by Pd(II) and Cu(I): Experimental tests of forty-one computer-generated mechanistic hypotheses
    • Bruk, L. G., Gorodskii, S. N., Zeigarnik, A. V., Valdés-Pérez, R. E., & Temkin, O. N. (1998). Oxidative carbonylation of phenylacetylene catalyzed by Pd(II) and Cu(I): Experimental tests of forty-one computer-generated mechanistic hypotheses. Journal of Molecular Catalysis A: Chemical, 130, 29-40.
    • (1998) Journal of Molecular Catalysis A: Chemical , vol.130 , pp. 29-40
    • Bruk, L.G.1    Gorodskii, S.N.2    Zeigarnik, A.V.3    Valdés-Pérez, R.E.4    Temkin, O.N.5
  • 4
    • 0002607026 scopus 로고    scopus 로고
    • Bayesian classification (AutoClass): Theory and results
    • In U. M. Fayyad, G. Piatetsky-Shapiro, P. Smyth, & R. Uthurusamy (Eds.), Cambridge, MA: MIT Press
    • Cheeseman, P., & Stutz, J. (1996). Bayesian classification (AutoClass): Theory and results. In U. M. Fayyad, G. Piatetsky-Shapiro, P. Smyth, & R. Uthurusamy (Eds.), Advances in knowledge discovery and data mining. Cambridge, MA: MIT Press.
    • (1996) Advances in Knowledge Discovery and Data Mining
    • Cheeseman, P.1    Stutz, J.2
  • 5
    • 84986528172 scopus 로고
    • The average distance is not more than the independence number
    • Chung, F. (1988). The average distance is not more than the independence number. Journal of Graph Theory, 12, 229-235.
    • (1988) Journal of Graph Theory , vol.12 , pp. 229-235
    • Chung, F.1
  • 6
    • 0000251427 scopus 로고
    • On conjectures of Graffiti
    • Fajtlowicz, S. (1988). On conjectures of Graffiti. Discrete Mathematics, 72, 113-118.
    • (1988) Discrete Mathematics , vol.72 , pp. 113-118
    • Fajtlowicz, S.1
  • 8
    • 0031997218 scopus 로고    scopus 로고
    • Pharmacophore discovery using the inductive logic programming system Progol
    • Finn, P., Muggleton, S., Page, D., & Srinivasan, A. (1998). Pharmacophore discovery using the inductive logic programming system Progol. Machine Learning, 30, 241-270.
    • (1998) Machine Learning , vol.30 , pp. 241-270
    • Finn, P.1    Muggleton, S.2    Page, D.3    Srinivasan, A.4
  • 12
    • 0342830432 scopus 로고
    • Generating predictions to aid the scientific discovery process.
    • Philadelphia: Morgan Kaufmann
    • Jones, R. (1986). Generating predictions to aid the scientific discovery process. Proceedings of the Fifth National Conference on Artificial Intelligence (pp. 513-517). Philadelphia: Morgan Kaufmann.
    • (1986) Proceedings of the Fifth National Conference on Artificial Intelligence , pp. 513-517
    • Jones, R.1
  • 13
    • 0030044168 scopus 로고    scopus 로고
    • Structure-activity relationships derived by machine learning: The use of atoms and their bond connectives to predict mutagenicity by inductive logic programming
    • King, R. D., Muggleton, S. H., Srinivasan, A., & Sternberg, M. E. J. (1996). Structure-activity relationships derived by machine learning: The use of atoms and their bond connectives to predict mutagenicity by inductive logic programming. Proceedings of the National Academy of Sciences, 93, 438-442.
    • (1996) Proceedings of the National Academy of Sciences , vol.93 , pp. 438-442
    • King, R.D.1    Muggleton, S.H.2    Srinivasan, A.3    Sternberg, M.E.J.4
  • 14
    • 0029824974 scopus 로고    scopus 로고
    • Prediction of rodent carcinogenicity bioassays from molecular structure using inductive logic programming
    • King, R. D., & Srinivasan, A. (1996). Prediction of rodent carcinogenicity bioassays from molecular structure using inductive logic programming. Environmental Health Perspectives, 104 (Supplement 5), 1031-1040.
    • (1996) Environmental Health Perspectives , vol.104 , pp. 1031-1040
    • King, R.D.1    Srinivasan, A.2
  • 15
    • 0026152082 scopus 로고
    • Conflict resolution as discovery in particle physics
    • Kocabas, S. (1991). Conflict resolution as discovery in particle physics. Machine Learning, 6, 277-309.
    • (1991) Machine Learning , vol.6 , pp. 277-309
    • Kocabas, S.1
  • 18
    • 0005293342 scopus 로고
    • Data-driven discovery of physical laws
    • Langley, P. (1981). Data-driven discovery of physical laws. Cognitive Science, 5, 31-54.
    • (1981) Cognitive Science , vol.5 , pp. 31-54
    • Langley, P.1
  • 19
    • 0029407395 scopus 로고
    • Applications of machine learning and rule induction.
    • November
    • Langley, P., & Simon, H. A. (1995). Applications of machine learning and rule induction. Communications of the ACM, 38, November, 55-64.
    • (1995) Communications of the ACM , vol.38 , pp. 55-64
    • Langley, P.1    Simon, H.A.2
  • 21
    • 0031997697 scopus 로고    scopus 로고
    • Knowledge-based learning in exploratory science: Learning rules to predict rodent carcinogenicity
    • Lee, Y., Buchanan, B. G., & Aronis, J. M. (1998). Knowledge-based learning in exploratory science: Learning rules to predict rodent carcinogenicity. Machine Learning, 30, 217-240.
    • (1998) Machine Learning , vol.30 , pp. 217-240
    • Lee, Y.1    Buchanan, B.G.2    Aronis, J.M.3
  • 22
  • 23
    • 0029850561 scopus 로고    scopus 로고
    • Carcinogenicity predictions for a group of 30 chemicals undergoing rodent cancer bioassays based on rules derived from subchronic organ toxicities
    • Lee, Y., Buchanan, B. G., & Rosenkranz, H. S. (1996). Carcinogenicity predictions for a group of 30 chemicals undergoing rodent cancer bioassays based on rules derived from subchronic organ toxicities. Environmental Health Perspectives, 104 (Supplement 5), 1059-1063.
    • (1996) Environmental Health Perspectives , vol.104 , pp. 1059-1063
    • Lee, Y.1    Buchanan, B.G.2    Rosenkranz, H.S.3
  • 25
    • 0003046842 scopus 로고
    • Learning from observation: Conceptual clustering
    • In R. S. Michalski, J. G. Carbonell, & T. M. Mitchell (Eds.), San Francisco: Morgan Kaufmann
    • Michalski, R. S., & Stepp, R. (1983). Learning from observation: Conceptual clustering. In R. S. Michalski, J. G. Carbonell, & T. M. Mitchell (Eds.), Machine learning: An artificial intelligence approach. San Francisco: Morgan Kaufmann.
    • (1983) Machine Learning: An Artificial Intelligence Approach.
    • Michalski, R.S.1    Stepp, R.2
  • 26
    • 0030638025 scopus 로고    scopus 로고
    • Optical basicity of metallurgical slags: A new computer-based system for data visualisation and analysis
    • Mitchell, F., Sleeman, D., Duffy, J. A., Ingram, M. D., & Young, R. W. (1997). Optical basicity of metallurgical slags: A new computer-based system for data visualisation and analysis. Ironmaking and Steelmaking, 24, 306-320.
    • (1997) Ironmaking and Steelmaking , vol.24 , pp. 306-320
    • Mitchell, F.1    Sleeman, D.2    Duffy, J.A.3    Ingram, M.D.4    Young, R.W.5
  • 27
    • 0027644647 scopus 로고
    • An integrated framework for empirical discovery
    • Nordhausen, B., & Langley, P. (1993). An integrated framework for empirical discovery. Machine Learning, 12, 17-47.
    • (1993) Machine Learning , vol.12 , pp. 17-47
    • Nordhausen, B.1    Langley, P.2
  • 28
    • 84949295577 scopus 로고    scopus 로고
    • Automatic componential analysis of kinship semantics with a proposed structural solution to the problem of multiple models
    • (in press)
    • Pericliev, V., & Valdés-Pérez, R. E. (in press). Automatic componential analysis of kinship semantics with a proposed structural solution to the problem of multiple models. Anthropological Linguistics.
    • Anthropological Linguistics
    • Pericliev, V.1    Valdés-Pérez, R.E.2
  • 29
    • 0040438001 scopus 로고
    • Chemical discovery as belief revision
    • Rose, D., & Langley, P. (1986). Chemical discovery as belief revision. Machine Learning, 1, 423-451.
    • (1986) Machine Learning , vol.1 , pp. 423-451
    • Rose, D.1    Langley, P.2
  • 31
    • 84949295578 scopus 로고    scopus 로고
    • Modeling and prediction of phytoplankton growth with equation discovery
    • (in press)
    • Todorovski, L., Džeroski, S., & Kompare, B. (in press). Modeling and prediction of phytoplankton growth with equation discovery. Ecological Modelling.
    • Ecological Modelling
    • Todorovski, L.1    Džeroski, S.2    Kompare, B.3
  • 32
    • 0002255427 scopus 로고
    • Human/computer interactive elucidation of reaction mechanisms: Application to catalyzed hydrogenolysis of ethane
    • Valdés-Pérez, R. E. (1994). Human/computer interactive elucidation of reaction mechanisms: Application to catalyzed hydrogenolysis of ethane. Catalysis Letters, 28, 79-87.
    • (1994) Catalysis Letters , vol.28 , pp. 79-87
    • Valdés-Pérez, R.E.1
  • 33
    • 0029272645 scopus 로고
    • Machine discovery in chemistry: New results
    • Valdés-Pérez, R. E. (1995). Machine discovery in chemistry: New results. Artificial Intelligence, 74, 191-201.
    • (1995) Artificial Intelligence , vol.74 , pp. 191-201
    • Valdés-Pérez, R.E.1
  • 35
    • 0001256877 scopus 로고    scopus 로고
    • Computer-aided mechanism elucidation of acetylene hydrocarboxylation to acrylic acid based on a novel union of empirical and formal methods
    • Zeigarnik, A. V., Valdés-Pérez, R. E., Temkin, O. N., Bruk, L. G., & Shalgunov, S. I. (1997). Computer-aided mechanism elucidation of acetylene hydrocarboxylation to acrylic acid based on a novel union of empirical and formal methods. Organometallics, 16, 3114-3127
    • (1997) Organometallics , vol.16 , pp. 3114-3127
    • Zeigarnik, A.V.1    Valdés-Pérez, R.E.2    Temkin, O.N.3    Bruk, L.G.4    Shalgunov, S.I.5
  • 36
    • 0030361832 scopus 로고    scopus 로고
    • Incremental discovery of hidden structure: Applications in theory of elementary particles.
    • Portland, OR: AAAI Press
    • Żytkow, J. M. (1996). Incremental discovery of hidden structure: Applications in theory of elementary particles. Proceedings of the Thirteenth National Conference on Artificial Intelligence (pp. 750-756). Portland, OR: AAAI Press
    • (1996) Proceedings of the Thirteenth National Conference on Artificial Intelligence , pp. 750-756
    • Żytkow, J.M.1
  • 37
    • 0342830419 scopus 로고
    • A theory of historical discovery: The construction of componential models
    • Żytkow, J. M., & Simon, H. A. (1986). A theory of historical discovery: The construction of componential models. Machine Learning, 1, 107-137
    • (1986) Machine Learning , vol.1 , pp. 107-137
    • Żytkow, J.M.1    Simon, H.A.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.