메뉴 건너뛰기




Volumn 94, Issue , 2015, Pages 182-187

Monotone equilibria in nonatomic supermodular games. A comment

Author keywords

Distributional equilibria; Games with strategic complementarities; Large games; Supermodular games

Indexed keywords


EID: 84949087589     PISSN: 08998256     EISSN: 10902473     Source Type: Journal    
DOI: 10.1016/j.geb.2015.05.010     Document Type: Note
Times cited : (4)

References (16)
  • 2
    • 84966220612 scopus 로고
    • On complete lattices having the Hausdorff interval topology
    • Atsumi K. On complete lattices having the Hausdorff interval topology. Proc. Amer. Math. Soc. 1966, 17(1):197-199.
    • (1966) Proc. Amer. Math. Soc. , vol.17 , Issue.1 , pp. 197-199
    • Atsumi, K.1
  • 3
    • 84949098456 scopus 로고    scopus 로고
    • A qualitative theory of large games with strategic complementarities
    • Balbus, Ł., Dziewulski, P., Reffett, K., Woźny, Ł., 2014. A qualitative theory of large games with strategic complementarities. Mimeo.
    • (2014) Mimeo.
    • Balbus, Ł.1    Dziewulski, P.2    Reffett, K.3    Woźny, Ł.4
  • 4
    • 84939598947 scopus 로고    scopus 로고
    • Differential information in large games with strategic complementarities
    • Balbus Ł., Dziewulski P., Reffett K., Woźny Ł. Differential information in large games with strategic complementarities. Econ. Theory 2015, 59(1):201-243.
    • (2015) Econ. Theory , vol.59 , Issue.1 , pp. 201-243
    • Balbus, Ł.1    Dziewulski, P.2    Reffett, K.3    Woźny, Ł.4
  • 7
    • 77953362756 scopus 로고    scopus 로고
    • Stationary sets
    • Springer, M. Foreman, A. Kanamori (Eds.)
    • Jech T. Stationary sets. Handbook of Set Theory 2010, Springer. M. Foreman, A. Kanamori (Eds.).
    • (2010) Handbook of Set Theory
    • Jech, T.1
  • 8
    • 51249188373 scopus 로고
    • Chain-complete posets and directed sets with applications
    • Markowsky G. Chain-complete posets and directed sets with applications. Algebra Universitae 1976, 6:53-68.
    • (1976) Algebra Universitae , vol.6 , pp. 53-68
    • Markowsky, G.1
  • 9
    • 33847330667 scopus 로고
    • Equilibrium points of nonatomic games
    • Schmeidler D. Equilibrium points of nonatomic games. J. Stat. Phys. 1973, 17(4):295-300.
    • (1973) J. Stat. Phys. , vol.17 , Issue.4 , pp. 295-300
    • Schmeidler, D.1
  • 10
    • 0000427952 scopus 로고
    • Real-valued measurable cardinals
    • Amer. Math. Soc., Providence, RI, D. Scott (Ed.)
    • Solovay R. Real-valued measurable cardinals. Axiomatic Set Theory 1971, Amer. Math. Soc., Providence, RI. D. Scott (Ed.).
    • (1971) Axiomatic Set Theory
    • Solovay, R.1
  • 11
    • 30444461201 scopus 로고    scopus 로고
    • The exact law of large numbers via Fubini extension and characterization of insurable risks
    • Sun Y. The exact law of large numbers via Fubini extension and characterization of insurable risks. J. Econ. Theory 2006, 126(1):31-69.
    • (2006) J. Econ. Theory , vol.126 , Issue.1 , pp. 31-69
    • Sun, Y.1
  • 12
    • 84972541021 scopus 로고
    • A lattice-theoretical fixpoint theorem and its applications
    • Tarski A. A lattice-theoretical fixpoint theorem and its applications. Pacific J. Math. 1955, 5:285-309.
    • (1955) Pacific J. Math. , vol.5 , pp. 285-309
    • Tarski, A.1
  • 13
    • 84949114193 scopus 로고
    • Veinott, Lattice programming: qualitative optimization and equilibria. MS Standford.
    • Veinott, 1992. Lattice programming: qualitative optimization and equilibria. MS Standford.
    • (1992)
  • 14
    • 44949269402 scopus 로고
    • Nash equilibrium with strategic complementarities
    • Vives X. Nash equilibrium with strategic complementarities. J. Math. Econ. 1990, 19:305-321.
    • (1990) J. Math. Econ. , vol.19 , pp. 305-321
    • Vives, X.1
  • 15
    • 84887005396 scopus 로고    scopus 로고
    • The nonatomic supermodular game
    • Yang J., Qi X. The nonatomic supermodular game. Games Econ. Behav. 2013, 82(C):609-620.
    • (2013) Games Econ. Behav. , vol.82 , pp. 609-620
    • Yang, J.1    Qi, X.2
  • 16
    • 0000398984 scopus 로고
    • The set of Nash equilibria of a supermodular game is a complete lattice
    • Zhou L. The set of Nash equilibria of a supermodular game is a complete lattice. Games Econ. Behav. 1994, 7:295-300.
    • (1994) Games Econ. Behav. , vol.7 , pp. 295-300
    • Zhou, L.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.