메뉴 건너뛰기




Volumn 362, Issue 1, 2015, Pages

Identification and catalytic residues of the arsenite methyltransferase from a sulfate-reducing bacterium, Clostridium sp. BXM

Author keywords

Arsenic; Conserved cysteine; Methylation; Methyltransferase; Sulfate reducing bacterium

Indexed keywords

ARSENITE METHYLTRANSFERASE; CYSTEINE; METHYLTRANSFERASE; UNCLASSIFIED DRUG; ARSENIC; RECOMBINANT PROTEIN;

EID: 84948947428     PISSN: 03781097     EISSN: 15746968     Source Type: Journal    
DOI: 10.1093/femsle/fnu003     Document Type: Article
Times cited : (64)

References (59)
  • 1
    • 0031260256 scopus 로고    scopus 로고
    • Microbial mobilization of arsenic from sediments of the Aberjona watershed
    • Ahmann D, Krumholz LR, Hemond HF, et al. Microbial mobilization of arsenic from sediments of the Aberjona watershed. Environ Sci Technol 1997;31:2923-30.
    • (1997) Environ Sci Technol , vol.31 , pp. 2923-2930
    • Ahmann, D.1    Krumholz, L.R.2    Hemond, H.F.3
  • 2
    • 72849137203 scopus 로고    scopus 로고
    • Effects of water management on cadmium and arsenic accumulation and dimethylarsinic acid concentrations in Japanese rice
    • Arao T, Kawasaki A, Baba K, et al. Effects of water management on cadmium and arsenic accumulation and dimethylarsinic acid concentrations in Japanese rice. Environ Sci Technol 2009;43:9361-7.
    • (2009) Environ Sci Technol , vol.43 , pp. 9361-9367
    • Arao, T.1    Kawasaki, A.2    Baba, K.3
  • 3
    • 83655164017 scopus 로고    scopus 로고
    • Dechlorination of p,p'-DDTs coupled with sulfate reduction by novel sulfate-reducing bacterium Clostridium sp
    • Bao P, Hu ZY,Wang XJ, et al. Dechlorination of p,p'-DDTs coupled with sulfate reduction by novel sulfate-reducing bacterium Clostridium sp. BXM. Environ Pollut 2012;162:303-10.
    • (2012) BXM. Environ Pollut , vol.162 , pp. 303-310
    • Bao, P.1    Hu, Z.Y.2    Wang, X.J.3
  • 4
    • 44749085651 scopus 로고    scopus 로고
    • Groundwater derived arsenic in high carbonate wetland soils: sources, sinks, and mobility
    • BauerM, Fulda B, Blodau C. Groundwater derived arsenic in high carbonate wetland soils: sources, sinks, and mobility. Sci Total Environ 2008;401:109-20.
    • (2008) Sci Total Environ , vol.401 , pp. 109-120
    • Bauer, M.1    Fulda, B.2    Blodau, C.3
  • 5
    • 0017184389 scopus 로고
    • A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding
    • Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 1976;72:248-54.
    • (1976) Anal Biochem , vol.72 , pp. 248-254
    • Bradford, M.M.1
  • 6
    • 0023341610 scopus 로고
    • Fixation, transformation, and mobilization of arsenic in sediments
    • Brannon JM. Fixation, transformation, and mobilization of arsenic in sediments. Environ Sci Technol 1987;21:450-9.
    • (1987) Environ Sci Technol , vol.21 , pp. 450-459
    • Brannon, J.M.1
  • 7
    • 84989558389 scopus 로고
    • Methylation of arsenic by anaerobic microbial consortia isolated from lake sediment
    • Bright DA, Brock S, Reimer KJ, et al. Methylation of arsenic by anaerobic microbial consortia isolated from lake sediment. Appl Organomet Chem 1994;8:415-22.
    • (1994) Appl Organomet Chem , vol.8 , pp. 415-422
    • Bright, D.A.1    Brock, S.2    Reimer, K.J.3
  • 8
    • 0028837094 scopus 로고
    • The ars operon of Escherichia coli confers arsenical and antimonial resistance
    • Carlin A, Shi W, Dey S, et al. The ars operon of Escherichia coli confers arsenical and antimonial resistance. J Bacteriol 1995;177:981-6.
    • (1995) J Bacteriol , vol.177 , pp. 981-986
    • Carlin, A.1    Shi, W.2    Dey, S.3
  • 9
    • 33947435182 scopus 로고
    • Biological methylation
    • Challenger F. Biological methylation. Chem Rev 1945;36:315-61.
    • (1945) Chem Rev , vol.36 , pp. 315-361
    • Challenger, F.1
  • 10
    • 0035186653 scopus 로고    scopus 로고
    • Treatment of metalcontaining wastewaters with a novel extractive membrane reactor using sulfate-reducing bacteria
    • Chuichulcherm S, Nagpal S, Peeva L, et al. Treatment of metalcontaining wastewaters with a novel extractive membrane reactor using sulfate-reducing bacteria. J Chem Technol Biot 2001;76:61-8.
    • (2001) J Chem Technol Biot , vol.76 , pp. 61-68
    • Chuichulcherm, S.1    Nagpal, S.2    Peeva, L.3
  • 11
    • 0021812183 scopus 로고
    • Sulfate-reducing bacteria: principal methylators of mercury in anoxic estuarine sediment
    • Compeau GC, Bartha R. Sulfate-reducing bacteria: principal methylators of mercury in anoxic estuarine sediment. Appl Environ Microb 1985;50:498-502.
    • (1985) Appl Environ Microb , vol.50 , pp. 498-502
    • Compeau, G.C.1    Bartha, R.2
  • 12
    • 33845184777 scopus 로고
    • Arsenic speciation in the environment
    • Cullen WR, Reimer KJ. Arsenic speciation in the environment. Chem Rev 1989;89:713-64.
    • (1989) Chem Rev , vol.89 , pp. 713-764
    • Cullen, W.R.1    Reimer, K.J.2
  • 14
    • 0141482101 scopus 로고    scopus 로고
    • Mercury methylation independent of the acetyl-coenzyme A pathway in sulfatereducing bacteria
    • Ekstrom EB, Morel FMM, Benoit JM. Mercury methylation independent of the acetyl-coenzyme A pathway in sulfatereducing bacteria. Appl Environ Microb 2003;69:5414-22.
    • (2003) Appl Environ Microb , vol.69 , pp. 5414-5422
    • Ekstrom, E.B.1    Morel, F.M.M.2    Benoit, J.M.3
  • 15
    • 78650725628 scopus 로고    scopus 로고
    • Controlled variation of redox conditions in a ffioodplain soil: impact on metal mobilization and biomethylation of arsenic and antimony
    • Frohne T, Rinklebe J, Diaz-Bone RA, et al. Controlled variation of redox conditions in a ffioodplain soil: impact on metal mobilization and biomethylation of arsenic and antimony. Geoderma 2011;160:414-24.
    • (2011) Geoderma , vol.160 , pp. 414-424
    • Frohne, T.1    Rinklebe, J.2    Diaz-Bone, R.A.3
  • 16
    • 67349097396 scopus 로고    scopus 로고
    • Effects of selenium on the structure and function of recombinant human S-adenosyl-Lmethionine dependent arsenic (+3 oxidation state) methyltransferase in E
    • Geng Z, Song X, Xing Z, et al. Effects of selenium on the structure and function of recombinant human S-adenosyl-Lmethionine dependent arsenic (+3 oxidation state) methyltransferase in E. coli. J Biol Inorg Chem 2009;14:485-96.
    • (2009) coli. J Biol Inorg Chem , vol.14 , pp. 485-496
    • Geng, Z.1    Song, X.2    Xing, Z.3
  • 17
    • 84862266270 scopus 로고    scopus 로고
    • Identification of an S-adenosylmethionine (SAM) dependent arsenic methyltransferase in Danio rerio
    • Hamdi M, Yoshinaga M, Packianathan C, et al. Identification of an S-adenosylmethionine (SAM) dependent arsenic methyltransferase in Danio rerio. Toxicol Appl Pharm 2012;262: 185-93.
    • (2012) Toxicol Appl Pharm , vol.262 , pp. 185-193
    • Hamdi, M.1    Yoshinaga, M.2    Packianathan, C.3
  • 18
    • 84863277603 scopus 로고    scopus 로고
    • Arsenic speciation and volatilization from flooded paddy soils amended with different organic matters
    • Huang H, Jia Y, Sun GX, et al. Arsenic speciation and volatilization from flooded paddy soils amended with different organic matters. Environ Sci Technol 2012;46:2163-8.
    • (2012) Environ Sci Technol , vol.46 , pp. 2163-2168
    • Huang, H.1    Jia, Y.2    Sun, G.X.3
  • 19
    • 0036840448 scopus 로고    scopus 로고
    • Mercury methylation by Desulfovibrio desulfuricans ND132 in the presence of polysulfides
    • Jay JA, Murray KJ, Gilmour CC, et al. Mercury methylation by Desulfovibrio desulfuricans ND132 in the presence of polysulfides. Appl Environ Microb 2002;68:5741-5.
    • (2002) Appl Environ Microb , vol.68 , pp. 5741-5745
    • Jay, J.A.1    Murray, K.J.2    Gilmour, C.C.3
  • 20
    • 84864678522 scopus 로고    scopus 로고
    • Pathways and relative contributions to arsenic volatilization from rice plants and paddy soil
    • Jia Y, Huang H, Sun GX, et al. Pathways and relative contributions to arsenic volatilization from rice plants and paddy soil. Environ Sci Technol 2012;46:8090-6.
    • (2012) Environ Sci Technol , vol.46 , pp. 8090-8096
    • Jia, Y.1    Huang, H.2    Sun, G.X.3
  • 21
    • 84875802965 scopus 로고    scopus 로고
    • Microbial arsenic methylation in soil and rice rhizosphere
    • Jia Y, Huang H, Zhong M, et al. Microbial arsenic methylation in soil and rice rhizosphere. Environ Sci Technol 2013;47: 3141-8.
    • (2013) Environ Sci Technol , vol.47 , pp. 3141-3148
    • Jia, Y.1    Huang, H.2    Zhong, M.3
  • 22
    • 0038049889 scopus 로고    scopus 로고
    • Removal of sulfate and heavy metals by sulfate reducing bacteria in short-term bench scale upffiow anaerobic packed bed reactor runs
    • Jong T, Parry DL. Removal of sulfate and heavy metals by sulfate reducing bacteria in short-term bench scale upffiow anaerobic packed bed reactor runs. Water Res 2003;37:3379-89.
    • (2003) Water Res , vol.37 , pp. 3379-3389
    • Jong, T.1    Parry, D.L.2
  • 23
    • 0034121140 scopus 로고    scopus 로고
    • Sulfate-reducing bacteria methylate mercury at variable rates in pure culture and in marine sediments
    • King JK, Kostka JE, Frischer ME, et al. Sulfate-reducing bacteria methylate mercury at variable rates in pure culture and in marine sediments. Appl Environ Microb 2000;66:2430-7.
    • (2000) Appl Environ Microb , vol.66 , pp. 2430-2437
    • King, J.K.1    Kostka, J.E.2    Frischer, M.E.3
  • 24
    • 9144238757 scopus 로고    scopus 로고
    • Bacterial sulfate reduction limits natural arsenic contamination in groundwater
    • Kirk MF, Holm TR, Park J, et al. Bacterial sulfate reduction limits natural arsenic contamination in groundwater. Geology 2004;32:953-6.
    • (2004) Geology , vol.32 , pp. 953-956
    • Kirk, M.F.1    Holm, T.R.2    Park, J.3
  • 25
    • 84949038882 scopus 로고    scopus 로고
    • Arsenic's interactions with macromolecules and its relationship to carcinogenesis
    • In: SunH(ed). Chichester, UK: John Wiley & Sons, Ltd
    • Kitchin KT. Arsenic's interactions with macromolecules and its relationship to carcinogenesis. In: SunH(ed). Biological Chemistry of Arsenic, Antimony and Bismuth. Chichester, UK: John Wiley & Sons, Ltd, 2011.
    • (2011) Biological Chemistry of Arsenic, Antimony and Bismuth.
    • Kitchin, K.T.1
  • 26
    • 33344476048 scopus 로고    scopus 로고
    • Dissociation of arsenite-peptide complexes: triphasic nature, rate constants, half-lives, and biological importance
    • Kitchin KT, Wallace K. Dissociation of arsenite-peptide complexes: triphasic nature, rate constants, half-lives, and biological importance. J Biochem Mol Toxicol 2006;20:48-56.
    • (2006) J Biochem Mol Toxicol , vol.20 , pp. 48-56
    • Kitchin, K.T.1    Wallace, K.2
  • 27
    • 33846033212 scopus 로고    scopus 로고
    • Diversity and abundance of sulfatereducing microorganisms in the sulfate and methane zones of a marine sediment, Black Sea
    • Leloup J, Loy A, KnabNJ, et al. Diversity and abundance of sulfatereducing microorganisms in the sulfate and methane zones of a marine sediment, Black Sea. EnvironMicrobiol 2007;9:131- 42.
    • (2007) EnvironMicrobiol , vol.9 , pp. 131-142
    • Leloup, J.1    Loy, A.2    Knab, N.J.3
  • 28
    • 0037192794 scopus 로고    scopus 로고
    • A novel S-adenosyl-L-methionine: arsenic(III) methyltransferase from rat liver cytosol
    • Lin S, Shi Q, Nix FB, et al. A novel S-adenosyl-L-methionine: arsenic(III) methyltransferase from rat liver cytosol. J Biol Chem 2002;277:10795-803.
    • (2002) J Biol Chem , vol.277 , pp. 10795-10803
    • Lin, S.1    Shi, Q.2    Nix, F.B.3
  • 29
    • 62049085009 scopus 로고    scopus 로고
    • Abundance and community structure of sulfate reducing prokaryotes in a paddy soil of southern China under different fertilization regimes
    • Liu XZ, Zhang LM, Prosser JI, et al. Abundance and community structure of sulfate reducing prokaryotes in a paddy soil of southern China under different fertilization regimes. Soil Biol Biochem 2009;41:687-94.
    • (2009) Soil Biol Biochem , vol.41 , pp. 687-694
    • Liu, X.Z.1    Zhang, L.M.2    Prosser, J.I.3
  • 30
    • 0035254281 scopus 로고    scopus 로고
    • Metal reduction by sulphate-reducing bacteria: physiological diversity and metal specificity
    • Lloyd JR, Mabbett AN, Williams DR, et al. Metal reduction by sulphate-reducing bacteria: physiological diversity and metal specificity. Hydrometallurgy 2001;59:327-37.
    • (2001) Hydrometallurgy , vol.59 , pp. 327-337
    • Lloyd, J.R.1    Mabbett, A.N.2    Williams, D.R.3
  • 31
    • 3743132950 scopus 로고    scopus 로고
    • Technetium reduction and precipitation by sulfate-reducing bacteria
    • Lloyd JR, Nolting HF, Solé VA, et al. Technetium reduction and precipitation by sulfate-reducing bacteria. Geomicrobiol J 1998;15:45-58.
    • (1998) Geomicrobiol J , vol.15 , pp. 45-58
    • Lloyd, J.R.1    Nolting, H.F.2    Solé, V.A.3
  • 32
    • 84855781243 scopus 로고    scopus 로고
    • Methylated arsenic species in plants originate from soil microorganisms
    • Lomax C, Liu WJ, Wu L, et al. Methylated arsenic species in plants originate from soil microorganisms. New Phytol 2012;193:665-72.
    • (2012) New Phytol , vol.193 , pp. 665-672
    • Lomax, C.1    Liu, W.J.2    Wu, L.3
  • 33
    • 0037119139 scopus 로고    scopus 로고
    • Arsenic round theworld: a review
    • Mandal BK, Suzuki KT. Arsenic round theworld: a review. Talanta 2002;58:201-35.
    • (2002) Talanta , vol.58 , pp. 201-235
    • Mandal, B.K.1    Suzuki, K.T.2
  • 34
    • 84856737967 scopus 로고    scopus 로고
    • Identification of catalytic residues in the As(III) S-adenosylmethionine methyltransferase
    • Marapakala K, Qin J, Rosen BP. Identification of catalytic residues in the As(III) S-adenosylmethionine methyltransferase. Biochemistry 2012;51:944-51.
    • (2012) Biochemistry , vol.51 , pp. 944-951
    • Marapakala, K.1    Qin, J.2    Rosen, B.P.3
  • 35
    • 0037439035 scopus 로고    scopus 로고
    • Arsenic contamination of Bangladesh paddy field soils: implications for rice contribution to arsenic consumption
    • Meharg AA, Rahman MM. Arsenic contamination of Bangladesh paddy field soils: implications for rice contribution to arsenic consumption. Environ Sci Technol 2003;37:229-34.
    • (2003) Environ Sci Technol , vol.37 , pp. 229-234
    • Meharg, A.A.1    Rahman, M.M.2
  • 36
    • 79952122965 scopus 로고    scopus 로고
    • Field fluxes and speciation of arsines emanating from soils
    • Mestrot A, Feldmann J, Krupp EM, et al. Field fluxes and speciation of arsines emanating from soils. Environ Sci Technol 2011;45:1798-804.
    • (2011) Environ Sci Technol , vol.45 , pp. 1798-1804
    • Mestrot, A.1    Feldmann, J.2    Krupp, E.M.3
  • 37
    • 70350749731 scopus 로고    scopus 로고
    • Quantitative and qualitative trapping of arsines deployed to assess loss of volatile arsenic from paddy soil
    • Mestrot A, Uroic MK, Plantevin T, et al. Quantitative and qualitative trapping of arsines deployed to assess loss of volatile arsenic from paddy soil. Environ Sci Technol 2009;43:8270-5.
    • (2009) Environ Sci Technol , vol.43 , pp. 8270-8275
    • Mestrot, A.1    Uroic, M.K.2    Plantevin, T.3
  • 39
    • 65249109869 scopus 로고    scopus 로고
    • Biotransformation of arsenic by a Yellowstone thermoacidophilic eukaryotic alga
    • Qin J, Lehr CR, Yuan C, et al. Biotransformation of arsenic by a Yellowstone thermoacidophilic eukaryotic alga. P Natl Acad Sci USA 2009;106:5213-7.
    • (2009) P Natl Acad Sci USA , vol.106 , pp. 5213-5217
    • Qin, J.1    Lehr, C.R.2    Yuan, C.3
  • 40
    • 33144480276 scopus 로고    scopus 로고
    • Arsenic detoxification and evolution of trimethylarsine gas by a microbial arsenite Sadenosylmethionine methyltransferase
    • Qin J, Rosen BP, Zhang Y, et al. Arsenic detoxification and evolution of trimethylarsine gas by a microbial arsenite Sadenosylmethionine methyltransferase. P Natl Acad Sci USA 2006;103:2075-80.
    • (2006) P Natl Acad Sci USA , vol.103 , pp. 2075-2080
    • Qin, J.1    Rosen, B.P.2    Zhang, Y.3
  • 41
    • 84882312793 scopus 로고    scopus 로고
    • Metabolic niche of a prominent sulfate-reducing human gut bacterium
    • Rey FE, Gonzalez MD, Cheng J, et al. Metabolic niche of a prominent sulfate-reducing human gut bacterium. P Natl Acad Sci USA 2013;110:13582-87.
    • (2013) P Natl Acad Sci USA , vol.110 , pp. 13582-13587
    • Rey, F.E.1    Gonzalez, M.D.2    Cheng, J.3
  • 42
    • 73449088748 scopus 로고    scopus 로고
    • Arsenic release from paddy soils during monsoon flooding
    • Roberts LC, Hug SJ, Dittmar J, et al. Arsenic release from paddy soils during monsoon flooding. Nat Geosci 2010;3:53-9.
    • (2010) Nat Geosci , vol.3 , pp. 53-59
    • Roberts, L.C.1    Hug, S.J.2    Dittmar, J.3
  • 43
    • 78651329535 scopus 로고    scopus 로고
    • Functional and structural evaluation of cysteine residues in the human arsenic (+3 oxidation state) methyltransferase (hAS3MT)
    • Song X, Geng Z, Li X, et al. Functional and structural evaluation of cysteine residues in the human arsenic (+3 oxidation state) methyltransferase (hAS3MT). Biochimie 2011;93:369-75.
    • (2011) Biochimie , vol.93 , pp. 369-375
    • Song, X.1    Geng, Z.2    Li, X.3
  • 44
    • 62549098120 scopus 로고    scopus 로고
    • Structure-function roles of four cysteine residues in the human arsenic (+3 oxidation state) methyltransferase (hAS3MT) by site-directed mutagenesis
    • Song X, Geng Z, Zhu J, et al. Structure-function roles of four cysteine residues in the human arsenic (+3 oxidation state) methyltransferase (hAS3MT) by site-directed mutagenesis. Chem-Biol Interact 2009;179:321-8.
    • (2009) Chem-Biol Interact , vol.179 , pp. 321-328
    • Song, X.1    Geng, Z.2    Zhu, J.3
  • 45
    • 55249111251 scopus 로고    scopus 로고
    • Bioremoval of arsenic species from contaminated waters by sulphate-reducing bacteria
    • Teclu D, Tivchev G, Laing M, et al. Bioremoval of arsenic species from contaminated waters by sulphate-reducing bacteria. Water Res 2008;42:4885-93.
    • (2008) Water Res , vol.42 , pp. 4885-4893
    • Teclu, D.1    Tivchev, G.2    Laing, M.3
  • 46
    • 33846161599 scopus 로고    scopus 로고
    • Arsenic (+3 oxidation state) methyltransferase and the methylation of arsenicals
    • Thomas DJ, Li JX, Waters SB, et al. Arsenic (+3 oxidation state) methyltransferase and the methylation of arsenicals. Exp Biol Med 2007;232:3-13.
    • (2007) Exp Biol Med , vol.232 , pp. 3-13
    • Thomas, D.J.1    Li, J.X.2    Waters, S.B.3
  • 47
    • 83155173374 scopus 로고    scopus 로고
    • Connection between multimetal(loid) methylation in methanoarchaea and central intermediates of methanogenesis
    • Thomas F, Diaz-Bone RA, Wuerfel O, et al. Connection between multimetal(loid) methylation in methanoarchaea and central intermediates of methanogenesis. Appl Environ Microb 2011;77:8669-75.
    • (2011) Appl Environ Microb , vol.77 , pp. 8669-8675
    • Thomas, F.1    Diaz-Bone, R.A.2    Wuerfel, O.3
  • 48
    • 70449729475 scopus 로고    scopus 로고
    • Arsenic metabolism by microbes in nature and the impact on arsenic remediation
    • Tsai SL, Singh S, Chen W. Arsenic metabolism by microbes in nature and the impact on arsenic remediation. Curr Opin Biotechnol 2009;20:659-67.
    • (2009) Curr Opin Biotechnol , vol.20 , pp. 659-667
    • Tsai, S.L.1    Singh, S.2    Chen, W.3
  • 49
    • 84904697381 scopus 로고    scopus 로고
    • Natural wetland emissions of methylated trace elements
    • Vriens B, Lenz M, Charlet L, et al. Natural wetland emissions of methylated trace elements. Nat Commun 2013:5:3035.
    • (2013) Nat Commun , vol.5 , pp. 3035
    • Vriens, B.1    Lenz, M.2    Charlet, L.3
  • 50
    • 84912282601 scopus 로고
    • Distribution of sulfate-reducing bacteria in paddy-field soil
    • Wakao N, Furusaka C. Distribution of sulfate-reducing bacteria in paddy-field soil. Soil Sci Plant Nutr 1973;19:47-52.
    • (1973) Soil Sci Plant Nutr , vol.19 , pp. 47-52
    • Wakao, N.1    Furusaka, C.2
  • 51
    • 84906858168 scopus 로고    scopus 로고
    • Completing arsenic biogeochemical cycle: microbial volatilization of arsines in environment
    • Wang P, Sun G, Jia Y, et al. Completing arsenic biogeochemical cycle: microbial volatilization of arsines in environment. J Environ Sci 2014;26:1-11.
    • (2014) J Environ Sci , vol.26 , pp. 1-11
    • Wang, P.1    Sun, G.2    Jia, Y.3
  • 52
    • 0001614970 scopus 로고
    • Gram-negative mesophilic sulfate reducing bacteria
    • In: Balows A, Trü per HG, Dworkin M, et al. (eds). New York: Springer
    • Widdel F, Bak F. Gram-negative mesophilic sulfate reducing bacteria. In: Balows A, Trü per HG, Dworkin M, et al. (eds). The Prokaryotes. New York: Springer, 1992, 3352-78.
    • (1992) The Prokaryotes , pp. 3352-3378
    • Widdel, F.1    Bak, F.2
  • 53
    • 48749124499 scopus 로고    scopus 로고
    • Growing rice aerobically markedly decreases arsenic accumulation
    • Xu XY, Mcgrath SP, Meharg AA, et al. Growing rice aerobically markedly decreases arsenic accumulation. Environ Sci Technol 2008;42:5574-9.
    • (2008) Environ Sci Technol , vol.42 , pp. 5574-5579
    • Xu, X.Y.1    Mcgrath, S.P.2    Meharg, A.A.3
  • 54
    • 84894270076 scopus 로고    scopus 로고
    • Identiffication and characterization of the arsenite methyltransferase from a protozoan, Tetrahymena pyriformis
    • Ye J, Chang Y, Yan Y, et al. Identiffication and characterization of the arsenite methyltransferase from a protozoan, Tetrahymena pyriformis. Aquat Toxicol 2014;149:50-7.
    • (2014) Aquat Toxicol , vol.149 , pp. 50-57
    • Ye, J.1    Chang, Y.2    Yan, Y.3
  • 55
    • 84862776542 scopus 로고    scopus 로고
    • Arsenic biomethylation by photosynthetic organisms
    • Ye J, Rensing C, Rosen BP, et al. Arsenic biomethylation by photosynthetic organisms. Trends Plant Sci 2012;17:155-62.
    • (2012) Trends Plant Sci , vol.17 , pp. 155-162
    • Ye, J.1    Rensing, C.2    Rosen, B.P.3
  • 56
    • 79960025129 scopus 로고    scopus 로고
    • Biotransformation and volatilization of arsenic by three photosynthetic cyanobacteria
    • Yin XX, Chen J, Qin J, et al. Biotransformation and volatilization of arsenic by three photosynthetic cyanobacteria. Plant Physiol 2011;156:1631-8.
    • (2011) Plant Physiol , vol.156 , pp. 1631-1638
    • Yin, X.X.1    Chen, J.2    Qin, J.3
  • 57
    • 0033012169 scopus 로고    scopus 로고
    • Arsenite methylation by methylvitamin B12 and glutathione does not require an enzyme
    • Zakharyan RA, Aposhian HV. Arsenite methylation by methylvitamin B12 and glutathione does not require an enzyme. Toxicol Appl Pharm 1999;154:287-91.
    • (1999) Toxicol Appl Pharm , vol.154 , pp. 287-291
    • Zakharyan, R.A.1    Aposhian, H.V.2
  • 58
    • 84880110178 scopus 로고    scopus 로고
    • Arsenic methylation in soils and its relationship with microbial arsM abundance and diversity, and as speciation in rice
    • Zhao FJ, Harris E, Jia Y, et al. Arsenic methylation in soils and its relationship with microbial arsM abundance and diversity, and as speciation in rice. Environ Sci Technol 2013;47: 7147-54.
    • (2013) Environ Sci Technol , vol.47 , pp. 7147-7154
    • Zhao, F.J.1    Harris, E.2    Jia, Y.3
  • 59
    • 46849102548 scopus 로고    scopus 로고
    • High percentage inorganic arsenic content of mining impacted and nonimpacted Chinese rice
    • Zhu YG, Sun GX, Lei M, et al. High percentage inorganic arsenic content of mining impacted and nonimpacted Chinese rice. Environ Sci Technol 2008;42:5008-13.
    • (2008) Environ Sci Technol , vol.42 , pp. 5008-5013
    • Zhu, Y.G.1    Sun, G.X.2    Lei, M.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.