메뉴 건너뛰기




Volumn 1, Issue 3, 2009, Pages 297-312

Deriving strong association mining rules using a dependency criterion, the lift measure

Author keywords

association rule mining; dependency criterion; frequent pattern mining; lift; strong association rules

Indexed keywords


EID: 84948648653     PISSN: 17558050     EISSN: 17558069     Source Type: Journal    
DOI: 10.1504/IJDATS.2009.024297     Document Type: Article
Times cited : (15)

References (39)
  • 1
    • 0141764033 scopus 로고    scopus 로고
    • A tree projection algorithm for generation of frequent itemsets
    • Special Issue on High Performance Data Mining
    • Agrawal, R., Aggrawal, C., and Prasad, V.V.V. (2001) ‘A tree projection algorithm for generation of frequent itemsets’, Special Issue on High Performance Data Mining, Journal of Parallel and Distributed Computing, Vol. 61, No. 3, pp.350–371.
    • (2001) Journal of Parallel and Distributed Computing , vol.61 , Issue.3 , pp. 350-371
    • Agrawal, R.1    Aggrawal, C.2    Prasad, V.V.V.3
  • 2
    • 0032090765 scopus 로고    scopus 로고
    • Automatic subspace clustering of high dimensional data for data mining applications
    • Agrawal, R., Gehrke, J., Gunopulos, D. and Raghavan, P. (1998) ‘Automatic subspace clustering of high dimensional data for data mining applications’, SIGMOD, pp.94–105.
    • (1998) SIGMOD , pp. 94-105
    • Agrawal, R.1    Gehrke, J.2    Gunopulos, D.3    Raghavan, P.4
  • 3
    • 0027621699 scopus 로고
    • Mining association rules between sets of items in large databases
    • ACM Press
    • Agrawal, R., Imielinski, T. and Swami, A. (1993) ‘Mining association rules between sets of items in large databases’, ACM SIGMOD Conference, ACM Press, pp.207–216.
    • (1993) ACM SIGMOD Conference , pp. 207-216
    • Agrawal, R.1    Imielinski, T.2    Swami, A.3
  • 4
    • 0001882616 scopus 로고
    • Fast algorithms for mining association rules in large databases
    • Morgan Kaufmann
    • Agrawal, R. and Srikant, R. (1994) ‘Fast algorithms for mining association rules in large databases’, Proceedings of the 20th VLDB Conference, Morgan Kaufmann.
    • (1994) Proceedings of the 20th VLDB Conference
    • Agrawal, R.1    Srikant, R.2
  • 8
    • 27944443169 scopus 로고    scopus 로고
    • GenMax: an efficient algorithm for mining maximal frequent itemsets
    • Gouda, K. and Zaki, M. (2005) ‘GenMax: an efficient algorithm for mining maximal frequent itemsets’, Data Mining and Knowledge Discovery, Vol. 11, No. 3, pp.223–242.
    • (2005) Data Mining and Knowledge Discovery , vol.11 , Issue.3 , pp. 223-242
    • Gouda, K.1    Zaki, M.2
  • 10
    • 27644510774 scopus 로고    scopus 로고
    • Fast algorithms for frequent itemset mining using FP-Trees
    • Grahne, G. and Zhu, J. (2005) ‘Fast algorithms for frequent itemset mining using FP-Trees’, IEEE Transactions on Knowledge and Data Engineering, Vol. 17, No. 10, pp.1347–1362.
    • (2005) IEEE Transactions on Knowledge and Data Engineering , vol.17 , Issue.10 , pp. 1347-1362
    • Grahne, G.1    Zhu, J.2
  • 12
    • 0039253846 scopus 로고    scopus 로고
    • Mining frequent patterns without candidate generation
    • Han, J., Pei, J. and Yin, Y. (2000) ‘Mining frequent patterns without candidate generation’, SIGMOD, pp.1–12.
    • (2000) SIGMOD , pp. 1-12
    • Han, J.1    Pei, J.2    Yin, Y.3
  • 13
    • 2442449952 scopus 로고    scopus 로고
    • Mining frequent patterns without candidate generation: a frequent-pattern tree approach
    • Han, J., Pei, J., Yin, Y. and Mao, R. (2004) ‘Mining frequent patterns without candidate generation: a frequent-pattern tree approach’, Data Mining and Knowledge Discovery, Vol. 8, No. 1, pp.53–87.
    • (2004) Data Mining and Knowledge Discovery , vol.8 , Issue.1 , pp. 53-87
    • Han, J.1    Pei, J.2    Yin, Y.3    Mao, R.4
  • 17
    • 84948104699 scopus 로고    scopus 로고
    • Integrating classification and association rule mining
    • Liu, B., Hsu, W. and Ma, Y. (1998) ‘Integrating classification and association rule mining’, KDD, pp.80–86.
    • (1998) KDD , pp. 80-86
    • Liu, B.1    Hsu, W.2    Ma, Y.3
  • 18
    • 33751160855 scopus 로고    scopus 로고
    • Efficient mining of frequent patterns using ascending frequency ordered prefix-tree
    • Liu, G., Lu, H., Lou, W., Xu, Y. and Yu, J.X. (2004) ‘Efficient mining of frequent patterns using ascending frequency ordered prefix-tree’, Data Mining and Knowledge Discovery, Vol. 9, pp.249–274.
    • (2004) Data Mining and Knowledge Discovery , vol.9 , pp. 249-274
    • Liu, G.1    Lu, H.2    Lou, W.3    Xu, Y.4    Yu, J.X.5
  • 19
    • 84869154556 scopus 로고    scopus 로고
    • Local and global methods in data mining: basic techniques and open problems
    • P. Widmayer, F. Triguero, R. Morales, M. Hennessy, S. Eidenbenz and R. Conejo (Eds.) Lecture Notes in Computer Science
    • Mannila, H. (2002) ‘Local and global methods in data mining: basic techniques and open problems’, in P. Widmayer, F. Triguero, R. Morales, M. Hennessy, S. Eidenbenz and R. Conejo (Eds.) Automata, Languages and Programming, Lecture Notes in Computer Science, Vol. 2380, pp.57–68.
    • (2002) Automata, Languages and Programming , vol.2380 , pp. 57-68
    • Mannila, H.1
  • 24
    • 3543095068 scopus 로고    scopus 로고
    • Pushing convertible constraints in frequent itemset mining
    • Pei, J., Han, J. and Lakshmanan, L.V.S. (2004) ‘Pushing convertible constraints in frequent itemset mining’, Data Mining and Knowledge Discovery, Vol. 8, pp.227–252.
    • (2004) Data Mining and Knowledge Discovery , vol.8 , pp. 227-252
    • Pei, J.1    Han, J.2    Lakshmanan, L.V.S.3
  • 30
    • 0000370733 scopus 로고    scopus 로고
    • Building hierarchical classifiers using class proximity
    • Wang, K., Zhou, S. and Liew, S.C. (1999) ‘Building hierarchical classifiers using class proximity’, VLDB, pp.363–374.
    • (1999) VLDB , pp. 363-374
    • Wang, K.1    Zhou, S.2    Liew, S.C.3
  • 31
    • 0033718951 scopus 로고    scopus 로고
    • Scalable algorithms for association mining
    • Zaki, J. (2000) ‘Scalable algorithms for association mining’, IEEE Transactions on Knowledge and Data Engineering, Vol. 12, No. 3, pp.372–390.
    • (2000) IEEE Transactions on Knowledge and Data Engineering , vol.12 , Issue.3 , pp. 372-390
    • Zaki, J.1
  • 33
    • 84948645492 scopus 로고    scopus 로고
    • ftp://ftp.ics.uci.edu/pub/machine-learning-databases/solar-flare
  • 34
    • 84948647079 scopus 로고    scopus 로고
    • http://archive.ics.uci.edu/ml/datasets/
  • 35
    • 84948645196 scopus 로고    scopus 로고
    • http://archive.ics.uci.edu/ml/datasets/Contraceptive+Method+Choice
  • 36
    • 84948648373 scopus 로고    scopus 로고
    • http://archive.ics.uci.edu/ml/datasets/El+Nino
  • 37
    • 84948645960 scopus 로고    scopus 로고
    • http://archive.ics.uci.edu/ml/datasets/Intemet+Usage+Data
  • 38
    • 84948647102 scopus 로고    scopus 로고
    • www.cs.waikato.ac.nz/ml/weka
  • 39
    • 84948646963 scopus 로고    scopus 로고
    • www.nascar.com


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.