메뉴 건너뛰기




Volumn 24, Issue 6, 2015, Pages 657-674

Assessing the sensitivity of methods for estimating principal causal effects

Author keywords

complier average causal effect; intermediate outcomes; non compliance; principal stratification; propensity scores

Indexed keywords

JOINT; MAXIMUM LIKELIHOOD METHOD; PROPENSITY SCORE; CAUSALITY; HUMAN; PATIENT COMPLIANCE; SENSITIVITY AND SPECIFICITY; STATISTICAL ANALYSIS; STATISTICAL MODEL; STATISTICS AND NUMERICAL DATA; TREATMENT OUTCOME;

EID: 84948395048     PISSN: 09622802     EISSN: 14770334     Source Type: Journal    
DOI: 10.1177/0962280211421840     Document Type: Article
Times cited : (67)

References (29)
  • 1
    • 0036188782 scopus 로고    scopus 로고
    • Principal stratification in causal inference
    • Frangakis CE, Rubin DB,. Principal stratification in causal inference. Biometrics 2002; 58: 21-29.
    • (2002) Biometrics , vol.58 , pp. 21-29
    • Frangakis, C.E.1    Rubin, D.B.2
  • 2
    • 0036960228 scopus 로고    scopus 로고
    • Estimation of intervention effects with noncompliance: Alternative model specifications
    • Jo B,. Estimation of intervention effects with noncompliance: alternative model specifications. J Educ Behav Stat 2002; 27 (4): 385-409.
    • (2002) J Educ Behav Stat , vol.27 , Issue.4 , pp. 385-409
    • Jo, B.1
  • 3
    • 70449397203 scopus 로고    scopus 로고
    • On the use of propensity scores in principal causal effect estimation
    • Jo B, Stuart EA,. On the use of propensity scores in principal causal effect estimation. Stat Med 2009; 28: 2857-2875.
    • (2009) Stat Med , vol.28 , pp. 2857-2875
    • Jo, B.1    Stuart, E.A.2
  • 5
    • 0346880128 scopus 로고    scopus 로고
    • Identification of causal effects using instrumental variables
    • Angrist JD, Imbens GW, Rubin DB,. Identification of causal effects using instrumental variables. J Am Stat Assoc 1996; 91 (434): 444-455.
    • (1996) J Am Stat Assoc , vol.91 , Issue.434 , pp. 444-455
    • Angrist, J.D.1    Imbens, G.W.2    Rubin, D.B.3
  • 7
    • 42349084894 scopus 로고    scopus 로고
    • Principal stratification for causal inference with extended partial compliance
    • Jin H, Rubin DB,. Principal stratification for causal inference with extended partial compliance. J Am Stat Assoc 2008; 103 (481): 101-111.
    • (2008) J Am Stat Assoc , vol.103 , Issue.481 , pp. 101-111
    • Jin, H.1    Rubin, D.B.2
  • 8
    • 0026200543 scopus 로고
    • From field experiments to program implementation: Assessing the potential outcomes of an experimental intervention program for unemployed persons
    • Vinokur AD, Price RH, Caplan RD,. From field experiments to program implementation: assessing the potential outcomes of an experimental intervention program for unemployed persons. Am J Commun Psychol 1991; 19: 543-562.
    • (1991) Am J Commun Psychol , vol.19 , pp. 543-562
    • Vinokur, A.D.1    Price, R.H.2    Caplan, R.D.3
  • 9
    • 0032365866 scopus 로고    scopus 로고
    • Statistical techniques for analyzing data from prevention trials: Treatment of no-shows using Rubin's causal model
    • Little RJA, Yau LHY,. Statistical techniques for analyzing data from prevention trials: treatment of no-shows using Rubin's causal model. Psychol Methods 1998; 3 (2): 147-159.
    • (1998) Psychol Methods , vol.3 , Issue.2 , pp. 147-159
    • Little, R.J.A.1    Yau, L.H.Y.2
  • 10
    • 77951622706 scopus 로고
    • The central role of the propensity score in observational studies for causal effects
    • Rosenbaum PR, Rubin DB,. The central role of the propensity score in observational studies for causal effects. Biometrika 1983; 70: 41-55.
    • (1983) Biometrika , vol.70 , pp. 41-55
    • Rosenbaum, P.R.1    Rubin, D.B.2
  • 11
    • 0002531157 scopus 로고
    • Bayesian inference for causal effects: The role of randomization
    • Rubin DB,. Bayesian inference for causal effects: the role of randomization. Ann Stat 1978; 6: 34-58.
    • (1978) Ann Stat , vol.6 , pp. 34-58
    • Rubin, D.B.1
  • 12
    • 84970443047 scopus 로고
    • Accounting for no-shows in experimental evaluation designs
    • Bloom HS,. Accounting for no-shows in experimental evaluation designs. Eval Rev 1984; 8 (2): 225-246.
    • (1984) Eval Rev , vol.8 , Issue.2 , pp. 225-246
    • Bloom, H.S.1
  • 13
    • 0031535102 scopus 로고    scopus 로고
    • Bayesian inference for causal effects in randomized experiments with noncompliance
    • Imbens GW, Rubin DB,. Bayesian inference for causal effects in randomized experiments with noncompliance. Ann Stat 1997; 25 (1): 305-327.
    • (1997) Ann Stat , vol.25 , Issue.1 , pp. 305-327
    • Imbens, G.W.1    Rubin, D.B.2
  • 14
    • 0000694661 scopus 로고    scopus 로고
    • Estimating outcome distributions for compliers in instrumental variable models
    • Imbens GW, Rubin DB,. Estimating outcome distributions for compliers in instrumental variable models. Rev Econ Studies 1997; 64: 555-574.
    • (1997) Rev Econ Studies , vol.64 , pp. 555-574
    • Imbens, G.W.1    Rubin, D.B.2
  • 15
    • 0141961485 scopus 로고    scopus 로고
    • Modeling of intervention effects with noncompliance: A latent variable modeling approach for randomized trials
    • In: (eds). Mahwah, NJ: Lawrence Erlbaum Associates
    • Jo B, Muthén BO, Modeling of intervention effects with noncompliance: a latent variable modeling approach for randomized trials. In: Marcoulides GA, Schumacker RE, (eds). Advanced structural equation modeling: new developments and techniques, Mahwah, NJ: Lawrence Erlbaum Associates, 2001, pp. 57-87.
    • (2001) Advanced Structural Equation Modeling: New Developments and Techniques , pp. 57-87
    • Jo, B.1    Muthén, B.O.2    Marcoulides, G.A.3    Schumacker, R.E.4
  • 17
    • 43749098314 scopus 로고    scopus 로고
    • Best practices in quasi-experimental designs: Matching methods for causal inference
    • In: (ed). Thousand Oaks, CA: Sage
    • Stuart EA, Rubin DB, Best practices in quasi-experimental designs: Matching methods for causal inference. In: Osborne J, (ed). Best practices in quantitative methods, Thousand Oaks, CA: Sage, 2007, pp. 155-176.
    • (2007) Best Practices in Quantitative Methods , pp. 155-176
    • Stuart, E.A.1    Rubin, D.B.2    Osborne, J.3
  • 18
    • 34548457818 scopus 로고    scopus 로고
    • Defining and estimating intervention effects for groups that will develop an auxiliary outcome
    • Joffe MM, Small D, Hsu C,. Defining and estimating intervention effects for groups that will develop an auxiliary outcome. Stat Sci 2007; 22 (1): 74-97.
    • (2007) Stat Sci , vol.22 , Issue.1 , pp. 74-97
    • Joffe, M.M.1    Small, D.2    Hsu, C.3
  • 19
    • 0141754045 scopus 로고    scopus 로고
    • Sustained effects of high participation in an early intervention for low-birth-weight premature infants
    • Hill J, Waldfogel J, Brooks-Gunn J,. Sustained effects of high participation in an early intervention for low-birth-weight premature infants. Develop Psychol 2003; 39 (4): 730-744.
    • (2003) Develop Psychol , vol.39 , Issue.4 , pp. 730-744
    • Hill, J.1    Waldfogel, J.2    Brooks-Gunn, J.3
  • 20
    • 0442325061 scopus 로고    scopus 로고
    • On the effect of treatment among would-be treatment compliers: An analysis of the multiple risk factor intervention trial
    • Follmann DA,. On the effect of treatment among would-be treatment compliers: An analysis of the multiple risk factor intervention trial. J Am Stat Assoc 2000; 95 (452): 1101-1109.
    • (2000) J Am Stat Assoc , vol.95 , Issue.452 , pp. 1101-1109
    • Follmann, D.A.1
  • 21
    • 77957806232 scopus 로고    scopus 로고
    • Matching Methods for Causal Inference: A review and a look forward
    • Stuart EA,. Matching Methods for Causal Inference: A review and a look forward. Stat Sci 2010; 25 (1): 1-21.
    • (2010) Stat Sci , vol.25 , Issue.1 , pp. 1-21
    • Stuart, E.A.1
  • 23
    • 84948421152 scopus 로고    scopus 로고
    • R Development Core Team. R: A language and environment for statistical computing. Available from: Vienna, Austria: R Foundation for Statistical Computing, 2008
    • R Development Core Team. R: A language and environment for statistical computing. Available from: http://www.cran.r-project.org. Vienna, Austria: R Foundation for Statistical Computing, 2008.
  • 24
    • 79958747321 scopus 로고    scopus 로고
    • MatchIt: Nonparametric preprocessing for parametric causal inference
    • Ho DE, Imai K, King G, Stuart EA,. MatchIt: Nonparametric preprocessing for parametric causal inference. J Stat Software 2011; 42 (8): 1-28.
    • (2011) J Stat Software , vol.42 , Issue.8 , pp. 1-28
    • Ho, D.E.1    Imai, K.2    King, G.3    Stuart, E.A.4
  • 26
    • 79960728414 scopus 로고    scopus 로고
    • Sensitivity analysis and bounding of causal effects with alternative identifying assumptions
    • Jo B, Vinokur A,. Sensitivity analysis and bounding of causal effects with alternative identifying assumptions. J Educ Behav Stat 2011; 36 (4): 415-440.
    • (2011) J Educ Behav Stat , vol.36 , Issue.4 , pp. 415-440
    • Jo, B.1    Vinokur, A.2
  • 28
    • 44949182789 scopus 로고    scopus 로고
    • Bias mechanisms in intention-to-treat analysis with data subject to treatment noncompliance and missing outcomes
    • Jo B,. Bias mechanisms in intention-to-treat analysis with data subject to treatment noncompliance and missing outcomes. J Edu Behav Stat 2008; 33 (2): 158-185.
    • (2008) J Edu Behav Stat , vol.33 , Issue.2 , pp. 158-185
    • Jo, B.1
  • 29
    • 0002765045 scopus 로고    scopus 로고
    • Assessing the effect of an influenza vaccine in an encouragement design with covariates
    • Hirano K, Imbens GW, Rubin DB, Zhou X,. Assessing the effect of an influenza vaccine in an encouragement design with covariates. Biostatistics 2000; 1: 69-88.
    • (2000) Biostatistics , vol.1 , pp. 69-88
    • Hirano, K.1    Imbens, G.W.2    Rubin, D.B.3    Zhou, X.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.