-
3
-
-
0039592729
-
From Kuramoto to Crawford: Exploring the onset of synchronization in populations of coupled oscillators
-
Strogatz, S. H. From Kuramoto to Crawford: exploring the onset of synchronization in populations of coupled oscillators. Physica. D 143, 1-20 (2000).
-
(2000)
Physica. D
, vol.143
, pp. 1-20
-
-
Strogatz, S.H.1
-
4
-
-
19944385353
-
The Kuramoto model: A simple paradigm for synchronization phenomena
-
Acebrón, J. A., Bonilla, L. L., Vicente, C. J. P., Ritort, F. & Spigler, R. The Kuramoto model: a simple paradigm for synchronization phenomena. Rev. Mod. Phys. 77, 137 (2005).
-
(2005)
Rev. Mod. Phys.
, vol.77
, pp. 137
-
-
Acebrón, J.A.1
Bonilla, L.L.2
Vicente, C.J.P.3
Ritort, F.4
Spigler, R.5
-
5
-
-
84870057673
-
Amplitude death: The emergence of stationarity in coupled nonlinear systems
-
Saxena, G., Prasad, A. & Ramaswamy, R. Amplitude death: the emergence of stationarity in coupled nonlinear systems. Phys. Rep. 521, 205-228 (2012).
-
(2012)
Phys. Rep.
, vol.521
, pp. 205-228
-
-
Saxena, G.1
Prasad, A.2
Ramaswamy, R.3
-
6
-
-
84885058162
-
Oscillation quenching mechanisms: Amplitude vs oscillation death
-
Koseska, A., Volkov, E. & Kurths, J. Oscillation quenching mechanisms: amplitude vs oscillation death. Phys. Rep. 531, 173-199 (2013).
-
(2013)
Phys. Rep.
, vol.531
, pp. 173-199
-
-
Koseska, A.1
Volkov, E.2
Kurths, J.3
-
7
-
-
0001123781
-
Stable stationary states of coupled chemical oscillators. Experimental evidence
-
Bar-Eli, K. & Reuveni, S. Stable stationary states of coupled chemical oscillators. experimental evidence. J. Phys. Chem. 89, 1329-1330 (1985).
-
(1985)
J. Phys. Chem.
, vol.89
, pp. 1329-1330
-
-
Bar-Eli, K.1
Reuveni, S.2
-
8
-
-
33751530567
-
Experimental and theoretical studies of a coupled chemical oscillator: Phase death, multlstability, and in-phase and out-of-phase entrainment
-
Crowley, M. F. & Epstein, I. R. Experimental and theoretical studies of a coupled chemical oscillator: phase death, multlstability, and in-phase and out-of-phase entrainment. J. Phys. Chem. 93, 2496-2502 (1989).
-
(1989)
J. Phys. Chem.
, vol.93
, pp. 2496-2502
-
-
Crowley, M.F.1
Epstein, I.R.2
-
9
-
-
0035474722
-
Synchronization effects in a dual-wavelength class-B laser with modulated losses
-
Kuntsevich, B. F. & Pisarchik, A. N. Synchronization effects in a dual-wavelength class-B laser with modulated losses. Phys. Rev. E 64, 046221 (2001).
-
(2001)
Phys. Rev. E
, vol.64
-
-
Kuntsevich, B.F.1
Pisarchik, A.N.2
-
10
-
-
0000537955
-
Experimental evidence of time-delay-induced death in coupled limit-cycle oscillators
-
Reddy, D. V. R., Sen, A. & Johnston, G. L. Experimental evidence of time-delay-induced death in coupled limit-cycle oscillators. Phys. Rev. Lett. 85, 3381-3384 (2000).
-
(2000)
Phys. Rev. Lett.
, vol.85
, pp. 3381-3384
-
-
Reddy, D.V.R.1
Sen, A.2
Johnston, G.L.3
-
11
-
-
0025388272
-
Oscillator death in systems of coupled neural oscillators
-
Ermentrout, G. B. & Kopell, N. Oscillator death in systems of coupled neural oscillators. SIAM J. Appl. Math. 50, 125-146 (1990).
-
(1990)
SIAM J. Appl. Math.
, vol.50
, pp. 125-146
-
-
Ermentrout, G.B.1
Kopell, N.2
-
12
-
-
84880096194
-
Transition from amplitude to oscillation death via Turing bifurcation
-
Koseska, A., Volkov, E. & Kurths, J. Transition from amplitude to oscillation death via Turing bifurcation. Phys. Rev. Lett. 111, 024103 (2013).
-
(2013)
Phys. Rev. Lett.
, vol.111
-
-
Koseska, A.1
Volkov, E.2
Kurths, J.3
-
13
-
-
84873468997
-
Synchronization in complex oscillator networks and smart grids
-
Döfler, F., Chertkov, M. & Bullo, F. Synchronization in complex oscillator networks and smart grids. Proc. Natl Acad. Sci. USA 110, 2005-2010 (2013).
-
(2013)
Proc. Natl Acad. Sci. USA
, vol.110
, pp. 2005-2010
-
-
Döfler, F.1
Chertkov, M.2
Bullo, F.3
-
14
-
-
84874656702
-
Spontaneous synchrony in power-grid networks
-
Motter, A. E., Myers, S. A., Anghel, M. & Nishikawa, T. Spontaneous synchrony in power-grid networks. Nat. Phys. 9, 191-197 (2013).
-
(2013)
Nat. Phys.
, vol.9
, pp. 191-197
-
-
Motter, A.E.1
Myers, S.A.2
Anghel, M.3
Nishikawa, T.4
-
15
-
-
84902285198
-
How dead ends undermine power grid stability
-
Menck, P. J., Heitzig, J., Kurths, J. & Schellnhuber, H. J. How dead ends undermine power grid stability. Nat. Commun. 5, 3969 (2014).
-
(2014)
Nat. Commun.
, vol.5
, pp. 3969
-
-
Menck, P.J.1
Heitzig, J.2
Kurths, J.3
Schellnhuber, H.J.4
-
16
-
-
84875540687
-
Self-oscillation
-
Jenkins, A. Self-oscillation. Phys. Rep. 525, 167-222 (2013).
-
(2013)
Phys. Rep.
, vol.525
, pp. 167-222
-
-
Jenkins, A.1
-
17
-
-
84923304573
-
Oscillations emerging from noise-driven steady state in networks with electrical synapses and subthreshold resonance
-
Tchumatchenko, T. & Clopath, C. Oscillations emerging from noise-driven steady state in networks with electrical synapses and subthreshold resonance. Nat. Commun. 5, 5512 (2014).
-
(2014)
Nat. Commun.
, vol.5
, pp. 5512
-
-
Tchumatchenko, T.1
Clopath, C.2
-
19
-
-
54149092219
-
A neural coding scheme formed by the combined function of gamma and theta oscillations
-
Lisman, J. & Buzsaki, G. A neural coding scheme formed by the combined function of gamma and theta oscillations. Schizophr. Bull. 34, 974-980 (2008).
-
(2008)
Schizophr. Bull
, vol.34
, pp. 974-980
-
-
Lisman, J.1
Buzsaki, G.2
-
20
-
-
45149139481
-
Amplitude response of coupled oscillators
-
Aronson, D. G., Ermentrout, G. B. & Kopell, N. Amplitude response of coupled oscillators. Physica. D 41, 403-449 (1990).
-
(1990)
Physica. D
, vol.41
, pp. 403-449
-
-
Aronson, D.G.1
Ermentrout, G.B.2
Kopell, N.3
-
21
-
-
34147192429
-
Amplitude death in an array of limit-cycle oscillators
-
Mirollo, R. E. & Strogatz, S. H. Amplitude death in an array of limit-cycle oscillators. J. Stat. Phys. 60, 245-262 (1990).
-
(1990)
J. Stat. Phys.
, vol.60
, pp. 245-262
-
-
Mirollo, R.E.1
Strogatz, S.H.2
-
22
-
-
0000068964
-
Time delay induced death in coupled limit cycle oscillators
-
Reddy, D. V. R., Sen, A. & Johnston, G. L. Time delay induced death in coupled limit cycle oscillators. Phys. Rev. Lett. 80, 5109-5112 (1998).
-
(1998)
Phys. Rev. Lett.
, vol.80
, pp. 5109-5112
-
-
Reddy, D.V.R.1
Sen, A.2
Johnston, G.L.3
-
23
-
-
0347963951
-
Time delay effects on coupled limit cycle oscillators at Hopf bifurcation
-
Reddy, D. V. R., Sen, A. & Johnston, G. L. Time delay effects on coupled limit cycle oscillators at Hopf bifurcation. Physica. D 129, 13-34 (1999).
-
(1999)
Physica. D
, vol.129
, pp. 13-34
-
-
Reddy, D.V.R.1
Sen, A.2
Johnston, G.L.3
-
24
-
-
0032560805
-
Death by delay
-
Strogatz, S. H. Death by delay. Nature 394, 316-317 (1998).
-
(1998)
Nature
, vol.394
, pp. 316-317
-
-
Strogatz, S.H.1
-
25
-
-
9744234606
-
Distributed delays facilitate amplitude death of coupled oscillators
-
Atay, F. M. Distributed delays facilitate amplitude death of coupled oscillators. Phys. Rev. Lett. 91, 094101 (2003).
-
(2003)
Phys. Rev. Lett.
, vol.91
-
-
Atay, F.M.1
-
26
-
-
73649110617
-
Partial time-delay coupling enlarges death island of coupled oscillators
-
Zou, W. & Zhan, M. Partial time-delay coupling enlarges death island of coupled oscillators. Phys. Rev. E 80, 065204 (2009).
-
(2009)
Phys. Rev. E
, vol.80
-
-
Zou, W.1
Zhan, M.2
-
27
-
-
34548850400
-
Amplitude death in the absence of time delays in identical coupled oscillators
-
Karnatak, R., Ramaswamy, R. & Prasad, A. Amplitude death in the absence of time delays in identical coupled oscillators. Phys. Rev. E 76, 035201(R) (2007).
-
(2007)
Phys. Rev. E
, vol.76
-
-
Karnatak, R.1
Ramaswamy, R.2
Prasad, A.3
-
28
-
-
1442281279
-
Amplitude death induced by dynamic coupling
-
Konishi, K. Amplitude death induced by dynamic coupling. Phys. Rev. E 68, 067202 (2003).
-
(2003)
Phys. Rev. E
, vol.68
-
-
Konishi, K.1
-
29
-
-
36849102494
-
Symmetry breaking instabilities in dissipative systems
-
Prigogine, I. & Lefever, R. Symmetry breaking instabilities in dissipative systems. J. Chem. Phys. 48, 1695-1700 (1968).
-
(1968)
J. Chem. Phys.
, vol.48
, pp. 1695-1700
-
-
Prigogine, I.1
Lefever, R.2
-
30
-
-
0021835107
-
On the stability of coupled chemical oscillators
-
Bar-Eli, K. On the stability of coupled chemical oscillators. Physica. D 14, 242-252 (1985).
-
(1985)
Physica. D
, vol.14
, pp. 242-252
-
-
Bar-Eli, K.1
-
31
-
-
84892651648
-
Time delay control of symmetry-breaking primary and secondary oscillation death
-
Zakharova, A. et al. Time delay control of symmetry-breaking primary and secondary oscillation death. Europhys. Lett. 104, 50004 (2013).
-
(2013)
Europhys. Lett.
, vol.104
-
-
Zakharova, A.1
-
32
-
-
84903769652
-
Chimera death: Symmetry breaking in dynamical networks
-
Zakharova, A., Kapeller, M. & Schöll, E. Chimera death: symmetry breaking in dynamical networks. Phys. Rev. Lett. 112, 154101 (2014).
-
(2014)
Phys. Rev. Lett.
, vol.112
-
-
Zakharova, A.1
Kapeller, M.2
Schöll, E.3
-
33
-
-
84888187625
-
Generalizing the transition from amplitude to oscillation death in coupled oscillators
-
Zou, W., Senthilkumar, D. V., Koseska, A. & Kurths, J. Generalizing the transition from amplitude to oscillation death in coupled oscillators. Phys. Rev. E 88, 050901 (2013).
-
(2013)
Phys. Rev. E
, vol.88
-
-
Zou, W.1
Senthilkumar, D.V.2
Koseska, A.3
Kurths, J.4
-
34
-
-
84907485921
-
Emergence of amplitude and oscillation death in identical coupled oscillators
-
Zou, W., Senthilkumar, D. V., Duan, J. & Kurths, J. Emergence of amplitude and oscillation death in identical coupled oscillators. Phys. Rev. E 90, 032906 (2014).
-
(2014)
Phys. Rev. E
, vol.90
-
-
Zou, W.1
Senthilkumar, D.V.2
Duan, J.3
Kurths, J.4
-
35
-
-
20444423310
-
Limitation of time-delay induced amplitude death
-
Konishi, K. Limitation of time-delay induced amplitude death. Phys. Lett. A 341, 401-409 (2005).
-
(2005)
Phys. Lett. A
, vol.341
, pp. 401-409
-
-
Konishi, K.1
-
36
-
-
84885125755
-
Efficient recovery of dynamic behavior in coupled oscillator networks
-
Morino, K., Tanaka, G. & Aihara, K. Efficient recovery of dynamic behavior in coupled oscillator networks. Phys. Rev. E 88, 032909 (2013).
-
(2013)
Phys. Rev. E
, vol.88
-
-
Morino, K.1
Tanaka, G.2
Aihara, K.3
-
37
-
-
84896307828
-
Spontaneous recovery in dynamical networks
-
Majdandzic, A. et al. Spontaneous recovery in dynamical networks. Nat. Phys. 10, 34-38 (2013).
-
(2013)
Nat. Phys.
, vol.10
, pp. 34-38
-
-
Majdandzic, A.1
-
38
-
-
78651353368
-
Eliminating delay-induced oscillation death by gradient coupling
-
Zou, W., Yao, C. & Zhan, M. Eliminating delay-induced oscillation death by gradient coupling. Phys. Rev. E 82, 056203 (2010).
-
(2010)
Phys. Rev. E
, vol.82
-
-
Zou, W.1
Yao, C.2
Zhan, M.3
-
39
-
-
84879970604
-
Reviving oscillations in coupled nonlinear oscillators
-
Zou, W., Senthilkumar, D. V., Zhan, M. & Kurths, J. Reviving oscillations in coupled nonlinear oscillators. Phys. Rev. Lett. 111, 014101 (2013).
-
(2013)
Phys. Rev. Lett.
, vol.111
-
-
Zou, W.1
Senthilkumar, D.V.2
Zhan, M.3
Kurths, J.4
-
41
-
-
30344466094
-
Oscillator death in coupled functional differential equations near Hopf bifurcation
-
Atay, F. M. Oscillator death in coupled functional differential equations near Hopf bifurcation. J. Diff. Eqn. 221, 190-209 (2006).
-
(2006)
J. Diff. Eqn
, vol.221
, pp. 190-209
-
-
Atay, F.M.1
-
42
-
-
33748614313
-
Nonlinear phenomena in electrochemical systems
-
Koper, M. Nonlinear phenomena in electrochemical systems. J. Chem. Soc. Faraday Trans. 94, 1369 (1998).
-
(1998)
J. Chem. Soc. Faraday Trans
, vol.94
, pp. 1369
-
-
Koper, M.1
-
43
-
-
0037205032
-
Emerging coherence in a population of chemical oscillators
-
Kiss, I. Z., Zhai, Y. & Hudson, J. L. Emerging coherence in a population of chemical oscillators. Science 296, 1676-1678 (2002).
-
(2002)
Science
, vol.296
, pp. 1676-1678
-
-
Kiss, I.Z.1
Zhai, Y.2
Hudson, J.L.3
-
45
-
-
0041511883
-
Total and partial amplitude death in networks of diffusively coupled oscillators
-
Atay, F. M. Total and partial amplitude death in networks of diffusively coupled oscillators. Physica. D 183, 1-18 (2003).
-
(2003)
Physica. D
, vol.183
, pp. 1-18
-
-
Atay, F.M.1
-
46
-
-
19544372264
-
Aging transition and universal scaling in oscillator networks
-
Daido, H. & Nakanishi, H. Aging transition and universal scaling in oscillator networks. Phys. Rev. Lett. 93, 104101 (2004).
-
(2004)
Phys. Rev. Lett.
, vol.93
-
-
Daido, H.1
Nakanishi, H.2
-
47
-
-
84900393937
-
Dynamical robustness of coupled heterogeneous oscillators
-
Tanaka, G., Morino, K., Daido, H. & Aihara, K. Dynamical robustness of coupled heterogeneous oscillators. Phys. Rev. E 89, 052906 (2014).
-
(2014)
Phys. Rev. E
, vol.89
-
-
Tanaka, G.1
Morino, K.2
Daido, H.3
Aihara, K.4
-
48
-
-
75149191906
-
A synchronized quorum of genetic clocks
-
Danino, T., Mondragón-Palomino, O., Tsimring, L. & Hasty, J. A synchronized quorum of genetic clocks. Nature 463, 326-330 (2010).
-
(2010)
Nature
, vol.463
, pp. 326-330
-
-
Danino, T.1
Mondragón-Palomino, O.2
Tsimring, L.3
Hasty, J.4
-
49
-
-
80052498962
-
Entrainment of a population of synthetic genetic oscillators
-
Mondragón-Palomino, O., Danino, T., Selimkhanov, J., Tsimring, L. & Hasty, J. Entrainment of a population of synthetic genetic oscillators. Science 333, 1315-1319 (2011).
-
(2011)
Science
, vol.333
, pp. 1315-1319
-
-
Mondragón-Palomino, O.1
Danino, T.2
Selimkhanov, J.3
Tsimring, L.4
Hasty, J.5
-
50
-
-
7444259575
-
Chemical and electrical synapses perform complementary roles in the synchronization of interneuronal networks
-
Kopell, N. & Ermentrout, G. B. Chemical and electrical synapses perform complementary roles in the synchronization of interneuronal networks. Proc. Natl Acad. Sci. USA 101, 15482-15487 (2004).
-
(2004)
Proc. Natl Acad. Sci. USA
, vol.101
, pp. 15482-15487
-
-
Kopell, N.1
Ermentrout, G.B.2
-
51
-
-
41349121803
-
Delayed feedback control of collective synchrony: An approach to suppression of pathological brain rhythms
-
Rosenblum, M. & Pikovsky, A. Delayed feedback control of collective synchrony: An approach to suppression of pathological brain rhythms. Phys. Rev. E 70, 041904 (2004).
-
(2004)
Phys. Rev. E
, vol.70
-
-
Rosenblum, M.1
Pikovsky, A.2
-
52
-
-
34347394200
-
Engineering complex dynamical structures: Sequential patterns and desynchronization
-
Kiss, I. Z., Rusin, C. G., Kori, H. & Hudson, J. L. Engineering complex dynamical structures: Sequential patterns and desynchronization. Science 316, 1886-1889 (2007).
-
(2007)
Science
, vol.316
, pp. 1886-1889
-
-
Kiss, I.Z.1
Rusin, C.G.2
Kori, H.3
Hudson, J.L.4
-
53
-
-
0242381371
-
Oscillation death in coupled nonautonomous systems with parametrical modulation
-
Pisarchik, A. N. Oscillation death in coupled nonautonomous systems with parametrical modulation. Phys. Lett. A 318, 65-70 (2003).
-
(2003)
Phys. Lett. A
, vol.318
, pp. 65-70
-
-
Pisarchik, A.N.1
-
54
-
-
34547838793
-
Amplitude death in coupled chaotic solid-state lasers with cavity-configuration-dependent instabilities
-
Wei, M. D. & Lun, J. C. Amplitude death in coupled chaotic solid-state lasers with cavity-configuration-dependent instabilities. Appl. Phys. Lett. 91, 061121 (2007).
-
(2007)
Appl. Phys. Lett.
, vol.91
-
-
Wei, M.D.1
Lun, J.C.2
-
55
-
-
84885718645
-
Oscillation death in a coupled van der Pol-Mathieu system
-
Bora, M. P. & Sarmah, D. Oscillation death in a coupled van der Pol-Mathieu system. Pramana 81, 677-690 (2013).
-
(2013)
Pramana
, vol.81
, pp. 677-690
-
-
Bora, M.P.1
Sarmah, D.2
-
56
-
-
84916629414
-
Amplitude death in coupled robust-chaos oscillators
-
Palazzi, M. J. & Cosenza, M. G. Amplitude death in coupled robust-chaos oscillators. Eur. Phys. J. Special Topics 223, 2831-2836 (2014).
-
(2014)
Eur. Phys. J. Special Topics
, vol.223
, pp. 2831-2836
-
-
Palazzi, M.J.1
Cosenza, M.G.2
-
57
-
-
84895900901
-
Complicated basins and the phenomenon of amplitude death in coupled hidden attractors
-
Chaudhuri, U. & Prasad, A. Complicated basins and the phenomenon of amplitude death in coupled hidden attractors. Phys. Lett. A 378, 713-718 (2014).
-
(2014)
Phys. Lett. A
, vol.378
, pp. 713-718
-
-
Chaudhuri, U.1
Prasad, A.2
-
58
-
-
0001002120
-
Experimental observation of the amplitude death effect in two coupled nonlinear oscillators
-
Herrero, R. et al. Experimental observation of the amplitude death effect in two coupled nonlinear oscillators. Phys. Rev. Lett. 84, 5312-5315 (2000).
-
(2000)
Phys. Rev. Lett.
, vol.84
, pp. 5312-5315
-
-
Herrero, R.1
-
59
-
-
4944262460
-
Synchronization and oscillator death in oscillatory media with stirring
-
Neufeld, Z., Kiss, I. Z., Zhou, C. S. & Kurths, J. Synchronization and oscillator death in oscillatory media with stirring. Phys. Rev. Lett. 91, 084101 (2003).
-
(2003)
Phys. Rev. Lett.
, vol.91
-
-
Neufeld, Z.1
Kiss, I.Z.2
Zhou, C.S.3
Kurths, J.4
-
60
-
-
19644401349
-
Strong coupling of nonlinear electronic and biological oscillators: Reaching the 'amplitude death' regime
-
Ozden, I. et al. Strong coupling of nonlinear electronic and biological oscillators: Reaching the 'amplitude death' regime. Phys. Rev. Lett. 93, 158102 (2004).
-
(2004)
Phys. Rev. Lett.
, vol.93
-
-
Ozden, I.1
-
61
-
-
84902436666
-
Experimental observation of a transition from amplitude to oscillation death in coupled oscillators
-
Banerjee, T. & Ghosh, D. Experimental observation of a transition from amplitude to oscillation death in coupled oscillators. Phys. Rev. E 89, 062902 (2014).
-
(2014)
Phys. Rev. E
, vol.89
-
-
Banerjee, T.1
Ghosh, D.2
-
62
-
-
84865782206
-
Experimental observation of chimeras in coupled-map lattices
-
Hagerstrom, A. M. et al. Experimental observation of chimeras in coupled-map lattices. Nat. Phys. 8, 658-661 (2012).
-
(2012)
Nat. Phys.
, vol.8
, pp. 658-661
-
-
Hagerstrom, A.M.1
-
63
-
-
84865731353
-
Chimera and phase-cluster states in populations of coupled chemical oscillators
-
Tinsley, M. R., Nkomo, S. & Showalter, K. Chimera and phase-cluster states in populations of coupled chemical oscillators. Nat. Phys. 8, 662-665 (2012).
-
(2012)
Nat. Phys.
, vol.8
, pp. 662-665
-
-
Tinsley, M.R.1
Nkomo, S.2
Showalter, K.3
-
64
-
-
79952903188
-
Explosive synchronization transitions in scale-free networks
-
Gómez-Gardeñes, J., Gómez, S., Arenas, A. & Moreno, Y. Explosive synchronization transitions in scale-free networks. Phys. Rev. Lett. 106, 128701 (2011).
-
(2011)
Phys. Rev. Lett.
, vol.106
-
-
Gómez-Gardeñes, J.1
Gómez, S.2
Arenas, A.3
Moreno, Y.4
-
65
-
-
84860153563
-
Explosive first-order transition to synchrony in networked chaotic oscillators
-
Leyva, L. et al. Explosive first-order transition to synchrony in networked chaotic oscillators. Phys. Rev. Lett. 108, 168702 (2012).
-
(2012)
Phys. Rev. Lett.
, vol.108
-
-
Leyva, L.1
-
66
-
-
0001428120
-
Population dynamics of randomly interacting self-oscillators. I Tractable models without frustration
-
Daido, H. Population dynamics of randomly interacting self-oscillators. I Tractable models without frustration. Prog. Theor. Phys. 77, 622-634 (1987).
-
(1987)
Prog. Theor. Phys.
, vol.77
, pp. 622-634
-
-
Daido, H.1
-
67
-
-
5244250305
-
Quasientrainment and slow relaxation in a population of oscillators with random and frustrated interactions
-
Daido, H. Quasientrainment and slow relaxation in a population of oscillators with random and frustrated interactions. Phys. Rev. Lett. 68, 1073-1076 (1992).
-
(1992)
Phys. Rev. Lett.
, vol.68
, pp. 1073-1076
-
-
Daido, H.1
-
68
-
-
84903154530
-
Glassy states and super-relaxation in populations of coupled phase oscillators
-
Iatsenko, D., McClintock, P. V. E. & Stefanovska, A. Q. Glassy states and super-relaxation in populations of coupled phase oscillators. Nat. Commun. 5, 4118 (2014).
-
(2014)
Nat. Commun.
, vol.5
, pp. 4118
-
-
Iatsenko, D.1
McClintock, P.V.E.2
Stefanovska, A.Q.3
-
70
-
-
33644627509
-
Solution operator approximation for characteristic roots of delay differential equations
-
Breda, D. Solution operator approximation for characteristic roots of delay differential equations. Appl. Numer. Math. 56, 305-317 (2006).
-
(2006)
Appl. Numer. Math.
, vol.56
, pp. 305-317
-
-
Breda, D.1
|