메뉴 건너뛰기




Volumn 4, Issue , 2014, Pages

Detecting causality from nonlinear dynamics with short-term time series

Author keywords

[No Author keywords available]

Indexed keywords

BIOLOGY; EMBEDDING; MODEL; NONLINEAR SYSTEM; STATISTICAL MODEL; THEORETICAL MODEL; TIME SERIES ANALYSIS; ALGORITHM; COMPUTER SIMULATION; EPIDEMIOLOGY; GENE REGULATORY NETWORK; GENETICS; STATISTICAL ANALYSIS; TIME;

EID: 84948131129     PISSN: None     EISSN: 20452322     Source Type: Journal    
DOI: 10.1038/srep07464     Document Type: Article
Times cited : (93)

References (41)
  • 1
    • 0000351727 scopus 로고
    • Investigating causal relations by econometric models and crossspectral methods
    • Granger, C. W. J. Investigating causal relations by econometric models and crossspectral methods. Econometrica 37, 424-438 (1969).
    • (1969) Econometrica , vol.37 , pp. 424-438
    • Granger, C.W.J.1
  • 2
    • 84867864222 scopus 로고    scopus 로고
    • Detecting causality in complex ecosystems
    • Sugihara, G. et al. Detecting causality in complex ecosystems. Science 338, 496-500 (2012).
    • (2012) Science , vol.338 , pp. 496-500
    • Sugihara, G.1
  • 3
    • 84867314481 scopus 로고    scopus 로고
    • A critical assessment of connectivity measures for EEG data: A simulation study
    • Haufe, S., Nikulin, V. V., Mller, K.-R. & Nolte, G. A critical assessment of connectivity measures for EEG data: A simulation study. NeuroImage 64, 120-133 (2013).
    • (2013) NeuroImage , vol.64 , pp. 120-133
    • Haufe, S.1    Nikulin, V.V.2    Mller, K.-R.3    Nolte, G.4
  • 5
    • 17344381221 scopus 로고    scopus 로고
    • Synchronization as adjustment of information rates: Detection from bivariate time series
    • Paluš,M., Komárek, V., Hrnčíř, Z. & Štěrbová, K. Synchronization as adjustment of information rates: detection from bivariate time series. Phys. Rev. E 63, 046211 (2001).
    • (2001) Phys. Rev. e , vol.63 , pp. 046211
    • Paluš, M.1    Komárek, V.2    Hrnčíř, Z.3    Štěrbová, K.4
  • 6
    • 84868196152 scopus 로고    scopus 로고
    • Geometric detection of coupling directions by means of inter-system recurrence networks
    • Feldhoff, J. H., Donner, R. V., Donges, J. F., Marwan, N. & Kurths, J. Geometric detection of coupling directions by means of inter-system recurrence networks. Phys. Lett. A 376, 3504-3513 (2012).
    • (2012) Phys. Lett. A , vol.376 , pp. 3504-3513
    • Feldhoff, J.H.1    Donner, R.V.2    Donges, J.F.3    Marwan, N.4    Kurths, J.5
  • 7
    • 75349093920 scopus 로고    scopus 로고
    • Identifying hidden common causes from bivariate time series: A method using recurrence plots
    • Hirata, Y. & Aihara, K. Identifying hidden common causes from bivariate time series: a method using recurrence plots. Phys. Rev. E 81, 016203 (2010).
    • (2010) Phys. Rev. e , vol.81 , pp. 016203
    • Hirata, Y.1    Aihara, K.2
  • 8
    • 19244387027 scopus 로고    scopus 로고
    • Analyzing multiple nonlinear time series with extended Granger causality
    • Chen, Y., Rangarajan, G., Feng, J. & Ding, M. Analyzing multiple nonlinear time series with extended Granger causality. Phys. Lett. A 324, 26-35 (2004).
    • (2004) Phys. Lett. A , vol.324 , pp. 26-35
    • Chen, Y.1    Rangarajan, G.2    Feng, J.3    Ding, M.4
  • 9
    • 41349110615 scopus 로고    scopus 로고
    • Radial basis function approach to nonlinear Granger causality of time series
    • Ancona, N., Marinazzo, D. & Stramaglia, S. Radial basis function approach to nonlinear Granger causality of time series. Phys. Rev. E 70, 056221 (2004).
    • (2004) Phys. Rev. e , vol.70 , pp. 056221
    • Ancona, N.1    Marinazzo, D.2    Stramaglia, S.3
  • 10
    • 0000528223 scopus 로고    scopus 로고
    • Detecting dynamical interdependence and generalized synchrony through mutual prediction in a neural ensemble
    • Schiff, S. J., So, P., Chang, T., Burke, R. E. & Sauer, T. Detecting dynamical interdependence and generalized synchrony through mutual prediction in a neural ensemble. Phys. Rev. E 54, 6708 (1996).
    • (1996) Phys. Rev. e , vol.54 , pp. 6708
    • Schiff, S.J.1    So, P.2    Chang, T.3    Burke, R.E.4    Sauer, T.5
  • 11
    • 0347662708 scopus 로고    scopus 로고
    • Nonlinear analyses of interictal EEG map the brain interdependences in human focal epilepsy
    • Quyen, M. L. V., Martinerie, J., Adam, C. & Varela, F. J. Nonlinear analyses of interictal EEG map the brain interdependences in human focal epilepsy. Physica D 127, 250-266 (1999).
    • (1999) Physica D , vol.127 , pp. 250-266
    • Quyen, M.L.V.1    Martinerie, J.2    Adam, C.3    Varela, F.J.4
  • 12
    • 33947524701 scopus 로고    scopus 로고
    • Causality detection based on information-theoretic approaches in time series analysis
    • Hlaváčková-Schindler, K., Paluš, M., Vejmelka, M. & Bhattacharya, J. Causality detection based on information-theoretic approaches in time series analysis. Phys. Rep. 441, 1-46 (2007).
    • (2007) Phys. Rep. , vol.441 , pp. 1-46
    • Hlaváčková-Schindler, K.1    Paluš, M.2    Vejmelka, M.3    Bhattacharya, J.4
  • 13
    • 70349238735 scopus 로고    scopus 로고
    • Reliable detection of directional couplings using rank statistics
    • Chicharro, D. & Andrzejak, R. G. Reliable detection of directional couplings using rank statistics. Phys. Rev. E 80, 026217 (2009).
    • (2009) Phys. Rev. e , vol.80 , pp. 026217
    • Chicharro, D.1    Andrzejak, R.G.2
  • 14
    • 0346401452 scopus 로고    scopus 로고
    • A robust method for detecting interdependences: Application to intracranially recorded EEG
    • Arnhold, J., Grassberger, P., Lehnertz, K. & Elger, C. A robust method for detecting interdependences: application to intracranially recorded EEG. Physica D 134, 419-430 (1999).
    • (1999) Physica D , vol.134 , pp. 419-430
    • Arnhold, J.1    Grassberger, P.2    Lehnertz, K.3    Elger, C.4
  • 15
    • 84876215157 scopus 로고    scopus 로고
    • Predicting climate effects on Pacific sardine
    • Deyle, E. R. et al. Predicting climate effects on Pacific sardine. Proc. Nat. Acad. Sci. USA 110, 6430-6435 (2013).
    • (2013) Proc. Nat. Acad. Sci. USA , vol.110 , pp. 6430-6435
    • Deyle, E.R.1
  • 16
    • 33750016109 scopus 로고    scopus 로고
    • Inferring gene regulatory networks from multiple microarray datasets
    • Wang, Y., Joshi, T., Zhang, X. & Chen, L. Inferring gene regulatory networks from multiple microarray datasets. Bioinformatics 22, 2413-2420 (2006).
    • (2006) Bioinformatics , vol.22 , pp. 2413-2420
    • Wang, Y.1    Joshi, T.2    Zhang, X.3    Chen, L.4
  • 17
    • 77950910419 scopus 로고    scopus 로고
    • Revealing strengths and weaknesses of methods for gene network inference
    • Marbach, D. et al. Revealing strengths and weaknesses of methods for gene network inference. Proc. Nat. Acad. Sci. USA 107, 6286-6291 (2010).
    • (2010) Proc. Nat. Acad. Sci. USA , vol.107 , pp. 6286-6291
    • Marbach, D.1
  • 18
    • 79961117812 scopus 로고    scopus 로고
    • Inner composition alignment for inferring directed networks from short time series
    • Hempel, S., Koseska, A., Kurths, J. & Nikoloski, Z. Inner composition alignment for inferring directed networks from short time series. Phys. Rev. Lett. 107, 054101 (2011).
    • (2011) Phys. Rev. Lett. , vol.107 , pp. 054101
    • Hempel, S.1    Koseska, A.2    Kurths, J.3    Nikoloski, Z.4
  • 19
    • 79960564239 scopus 로고    scopus 로고
    • Unraveling gene regulatory networks from time-resolved gene expression data - A measures comparison study
    • Hempel, S., Koseska, A., Nikoloski, Z. & Kurths, J. Unraveling gene regulatory networks from time-resolved gene expression data-a measures comparison study. BMC bioinformatics 12, 292 (2011).
    • (2011) BMC Bioinformatics , vol.12 , pp. 292
    • Hempel, S.1    Koseska, A.2    Nikoloski, Z.3    Kurths, J.4
  • 20
    • 48249131626 scopus 로고    scopus 로고
    • Short time-series microarray analysis: Methods and challenges
    • Wang, X., Wu, M., Li, Z. & Chan, C. Short time-series microarray analysis: Methods and challenges. BMC Systems Biology 2, 58 (2008).
    • (2008) BMC Systems Biology , vol.2 , pp. 58
    • Wang, X.1    Wu, M.2    Li, Z.3    Chan, C.4
  • 21
    • 84879768023 scopus 로고    scopus 로고
    • LegumeGRN: A Gene Regulatory Network Prediction Server for Functional and Comparative Studies
    • Wang, M. et al. LegumeGRN: A Gene Regulatory Network Prediction Server for Functional and Comparative Studies. PloS one 8, e67434 (2013).
    • (2013) PloS One , vol.8 , pp. e67434
    • Wang, M.1
  • 22
    • 0000779360 scopus 로고
    • D. A., Young, L. S. (ed.) (Springer-Verlag, New York)
    • Takens, F. Dynamical Systems and Turbulence Rand, D. A. & Young, L. S. (ed.) 366-381 (Springer-Verlag, New York, 1981).
    • (1981) Dynamical Systems and Turbulence Rand , pp. 366-381
    • Takens, F.1
  • 25
    • 35949006791 scopus 로고
    • Determining embedding dimension for phase-space reconstruction using a geometrical construction
    • Kennel, M. B. et al. Determining embedding dimension for phase-space reconstruction using a geometrical construction. Phys. Rev. A 45, 3403-3411 (1992).
    • (1992) Phys. Rev. A , vol.45 , pp. 3403-3411
    • Kennel, M.B.1
  • 26
    • 0000106040 scopus 로고
    • Universal approximation using radial-basis-function networks
    • Park, J. & Sandberg, I. W. Universal approximation using radial-basis-function networks. Neural Comput. 3, 246-257 (1991).
    • (1991) Neural Comput. , vol.3 , pp. 246-257
    • Park, J.1    Sandberg, I.W.2
  • 27
    • 0036136472 scopus 로고    scopus 로고
    • Nonparametric permutation tests for functional neuroimaging: A primer with examples
    • Nichols, T. E. & Holmes, A. P. Nonparametric permutation tests for functional neuroimaging: A primer with examples. Hum. Brain Mapp. 15, 1-25 (2002).
    • (2002) Hum. Brain Mapp. , vol.15 , pp. 1-25
    • Nichols, T.E.1    Holmes, A.P.2
  • 28
    • 79960255449 scopus 로고    scopus 로고
    • Granger causality with signal-dependent noise
    • Luo, Q., Ge, T. & Feng, J. Granger causality with signal-dependent noise. Neuroimage 57, 1422-1429 (2011).
    • (2011) Neuroimage , vol.57 , pp. 1422-1429
    • Luo, Q.1    Ge, T.2    Feng, J.3
  • 29
    • 44949262939 scopus 로고    scopus 로고
    • Uncovering interactions in the frequency domain
    • Guo, S. et al. Uncovering interactions in the frequency domain. Plos. Comput. Bio. 4, e1000087 (2008).
    • (2008) Plos. Comput. Bio. , vol.4 , pp. e1000087
    • Guo, S.1
  • 30
    • 33144486498 scopus 로고    scopus 로고
    • SynTReN: A generator of synthetic gene expression data for design and analysis of structure learning algorithms
    • Van den Bulcke, T. et al. SynTReN: a generator of synthetic gene expression data for design and analysis of structure learning algorithms. BMC bioinformatics 7, 43 (2006).
    • (2006) BMC Bioinformatics , vol.7 , pp. 43
    • Van Den Bulcke, T.1
  • 31
    • 0030800564 scopus 로고    scopus 로고
    • The reversible Hill equation: How to incorporate cooperative enzymes into metabolic models
    • Hofmeyr, J.-H. S. & Cornish-Bowden, H. The reversible Hill equation: how to incorporate cooperative enzymes into metabolic models. Comput. Appl. Biosci. 13, 377-385 (1997).
    • (1997) Comput. Appl. Biosci. , vol.13 , pp. 377-385
    • Hofmeyr, J.-H.S.1    Cornish-Bowden, H.2
  • 32
    • 0036578795 scopus 로고    scopus 로고
    • Network motifs in the transcriptional regulation network of Escherichia coli
    • Shen-Orr, S. S., Milo, R., Mangan, S. & Alon, U. Network motifs in the transcriptional regulation network of Escherichia coli. Nat. Genet. 31, 64-68 (2002).
    • (2002) Nat. Genet. , vol.31 , pp. 64-68
    • Shen-Orr, S.S.1    Milo, R.2    Mangan, S.3    Alon, U.4
  • 33
    • 69249154268 scopus 로고    scopus 로고
    • A network biology study on circadian rhythm by integrating various omics data
    • Wang, Y., Zhang, X.-S. & Chen, L. A network biology study on circadian rhythm by integrating various omics data. OMICS 13, 313-324 (2009).
    • (2009) OMICS , vol.13 , pp. 313-324
    • Wang, Y.1    Zhang, X.-S.2    Chen, L.3
  • 34
    • 33847204619 scopus 로고    scopus 로고
    • Establishment of cell lines derived from the rat suprachiasmatic nucleus
    • Kawaguchi, S. et al. Establishment of cell lines derived from the rat suprachiasmatic nucleus. Biochem. Bioph. Res. Co. 355, 555-561 (2007).
    • (2007) Biochem. Bioph. Res. Co. , vol.355 , pp. 555-561
    • Kawaguchi, S.1
  • 35
    • 69249135951 scopus 로고    scopus 로고
    • Phase shifts of circadian transcripts in rat suprachiasmatic nucleus
    • 109C114 (World Publishing Corporation, Lijiang, China)
    • Morioka, R. et al. Phase Shifts of Circadian Transcripts in Rat Suprachiasmatic Nucleus. In The Second International Symposium on Optimization and Systems Biology. 109C114 (World Publishing Corporation, Lijiang, China, 2008).
    • (2008) The Second International Symposium on Optimization and Systems Biology
    • Morioka, R.1
  • 36
    • 13944254430 scopus 로고    scopus 로고
    • System-level identification of transcriptional circuits underlying mammalian circadian clocks
    • Ueda, H. R. et al. System-level identification of transcriptional circuits underlying mammalian circadian clocks. Nat. Genet. 37, 187-192 (2005).
    • (2005) Nat. Genet. , vol.37 , pp. 187-192
    • Ueda, H.R.1
  • 37
    • 33749031807 scopus 로고    scopus 로고
    • Molecular components of the mammalian circadian clock
    • Ko, C. H. & Takahashi, J. S. Molecular components of the mammalian circadian clock. Hum. Mol. Genet. 15, R271-R277 (2006).
    • (2006) Hum. Mol. Genet. , vol.15 , pp. R271-R277
    • Ko, C.H.1    Takahashi, J.S.2
  • 38
    • 84859741480 scopus 로고    scopus 로고
    • Detecting early-warning signals for sudden deterioration of complex diseases by dynamical network biomarkers
    • Chen, L. et al. Detecting early-warning signals for sudden deterioration of complex diseases by dynamical network biomarkers. Sci. Rep. 2, 342 (2012).
    • (2012) Sci. Rep. , vol.2 , pp. 342
    • Chen, L.1
  • 39
    • 84897433296 scopus 로고    scopus 로고
    • Early diagnosis of complex diseases by molecular biomarkers, network biomarkers, and dynamical network biomarkers
    • Liu, R. et al. Early diagnosis of complex diseases by molecular biomarkers, network biomarkers, and dynamical network biomarkers. Medicinal Research Reviews 34, 455-478 (2013).
    • (2013) Medicinal Research Reviews , vol.34 , pp. 455-478
    • Liu, R.1
  • 40
    • 84901315597 scopus 로고    scopus 로고
    • Identifying critical transitions of complex diseases based on a single sample
    • Liu, R. et al. Identifying critical transitions of complex diseases based on a single sample. Bioinformatics 30, 1579-1586 (2014).
    • (2014) Bioinformatics , vol.30 , pp. 1579-1586
    • Liu, R.1
  • 41
    • 84922632216 scopus 로고    scopus 로고
    • Predicting time-series from short-term high-dimensional data
    • Ma, H. et al. Predicting Time-Series from Short-Term High-Dimensional Data. Int. J. Bifurcat. Chaos 24, 1430033 (2014).
    • (2014) Int. J. Bifurcat. Chaos , vol.24 , pp. 1430033
    • Ma, H.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.