메뉴 건너뛰기




Volumn 30, Issue 2, 2016, Pages 334-350

Incorporating spatial interaction patterns in classifying and understanding urban land use

Author keywords

classification; social sensing; spatial interaction; Urban land use

Indexed keywords

CLASSIFICATION; DATA SET; GIS; LAND USE; SPATIAL ANALYSIS; SPATIAL DATA; URBAN AREA;

EID: 84948064862     PISSN: 13658816     EISSN: 13623087     Source Type: Journal    
DOI: 10.1080/13658816.2015.1086923     Document Type: Article
Times cited : (141)

References (37)
  • 2
    • 0035501668 scopus 로고    scopus 로고
    • The influence of land use on travel behavior: specification and estimation strategies
    • M.Boarnet, and R.Crane,, 2001. The influence of land use on travel behavior: specification and estimation strategies. Transportation Research Part A: Policy and Practice, 35 (9), 823–845.
    • (2001) Transportation Research Part A: Policy and Practice , vol.35 , Issue.9 , pp. 823-845
    • Boarnet, M.1    Crane, R.2
  • 3
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • L.Breiman,, 2001. Random forests. Machine Learning, 45 (1), 5–32. doi:10.1023/A:1010933404324
    • (2001) Machine Learning , vol.45 , Issue.1 , pp. 5-32
    • Breiman, L.1
  • 4
    • 31444431866 scopus 로고    scopus 로고
    • The scaling laws of human travel
    • D.Brockmann,, L.Hufnagel,, and T.Geisel,, 2006. The scaling laws of human travel. Nature, 439 (7075), 462–465. doi:10.1038/nature04292
    • (2006) Nature , vol.439 , Issue.7075 , pp. 462-465
    • Brockmann, D.1    Hufnagel, L.2    Geisel, T.3
  • 5
    • 80054074380 scopus 로고    scopus 로고
    • Estimating origin-destination flows using mobile phone location data
    • F.Calabrese,, et al., 2011. Estimating origin-destination flows using mobile phone location data. IEEEPervasive Computing, 10, 36–44. doi:10.1109/MPRV.2011.41
    • (2011) IEEEPervasive Computing , vol.10 , pp. 36-44
    • Calabrese, F.1
  • 6
    • 75449091232 scopus 로고    scopus 로고
    • Eigenplaces: segmenting space through digital signatures
    • F.Calabrese,, J.Reades,, and C.Ratti,, 2010. Eigenplaces: segmenting space through digital signatures. Pervasive Computing, IEEE, 9 (1), 78–84. doi:10.1109/MPRV.2009.62
    • (2010) Pervasive Computing, IEEE , vol.9 , Issue.1 , pp. 78-84
    • Calabrese, F.1    Reades, J.2    Ratti, C.3
  • 8
    • 49449098182 scopus 로고    scopus 로고
    • What is the expectation maximization algorithm?
    • C.B.Do, and S.Batzoglou,, 2008. What is the expectation maximization algorithm? Nature Biotechnology, 26 (8), 897–899. doi:10.1038/nbt1406
    • (2008) Nature Biotechnology , vol.26 , Issue.8 , pp. 897-899
    • Do, C.B.1    Batzoglou, S.2
  • 11
    • 44849122540 scopus 로고    scopus 로고
    • Understanding individual human mobility patterns
    • M.C.González,, C.A.Hidalgo,, and A.-L.Barabási,, 2008. Understanding individual human mobility patterns. Nature, 453 (7196), 779–782. doi:10.1038/nature06958
    • (2008) Nature , vol.453 , Issue.7196 , pp. 779-782
    • González, M.C.1    Hidalgo, C.A.2    Barabási, A.-L.3
  • 12
    • 84922600337 scopus 로고    scopus 로고
    • Revealing travel patterns and city structure with taxi trip data
    • X.Liu,, et al., 2015a. Revealing travel patterns and city structure with taxi trip data. Journal of Transport Geography, 43, 78–90. doi:10.1016/j.jtrangeo.2015.01.016
    • (2015) Journal of Transport Geography , vol.43 , pp. 78-90
    • Liu, X.1
  • 13
    • 84929606927 scopus 로고    scopus 로고
    • Social sensing: a new approach to understanding our socioeconomic environments
    • Y.Liu,, et al., 2015b. Social sensing: a new approach to understanding our socioeconomic environments. Annals of the Association of American Geographers, 105 (3), 512–530. doi:10.1080/00045608.2015.1018773
    • (2015) Annals of the Association of American Geographers , vol.105 , Issue.3 , pp. 512-530
    • Liu, Y.1
  • 14
    • 84898438317 scopus 로고    scopus 로고
    • Uncovering patterns of inter-urban trip and spatial interaction from social media check-in data
    • Y.Liu,, et al., 2014. Uncovering patterns of inter-urban trip and spatial interaction from social media check-in data. PLoS ONE, 9 (1), e86026. doi:10.1371/journal.pone.0086026
    • (2014) PLoS ONE , vol.9 , Issue.1 , pp. 86026
    • Liu, Y.1
  • 15
    • 84862792974 scopus 로고    scopus 로고
    • Urban land uses and traffic ‘source-sink areas’: evidence from GPS-enabled taxi data in Shanghai
    • Y.Liu,, et al., 2012. Urban land uses and traffic ‘source-sink areas’: evidence from GPS-enabled taxi data in Shanghai. Landscape and Urban Planning, 106 (1), 73–87. doi:10.1016/j.landurbplan.2012.02.012
    • (2012) Landscape and Urban Planning , vol.106 , Issue.1 , pp. 73-87
    • Liu, Y.1
  • 16
    • 84945493881 scopus 로고    scopus 로고
    • Combining smart card data and household travel survey to analyze jobs–housing relationships in Beijing
    • in press
    • Y.Long, and J.-C.Thill,, in press. Combining smart card data and household travel survey to analyze jobs–housing relationships in Beijing. Computers, Environment and Urban Systems.doi:10.1016/j.compenvurbsys.2015.02.005
    • Computers, Environment and Urban Systems
    • Long, Y.1    Thill, J.-C.2
  • 17
    • 28344443465 scopus 로고    scopus 로고
    • Tobler’s first law and spatial analysis
    • H.Miller,, 2004. Tobler’s first law and spatial analysis. Annals of the Association of American Geographers, 94 (2), 284–289. doi:10.1111/j.1467-8306.2004.09402005.x
    • (2004) Annals of the Association of American Geographers , vol.94 , Issue.2 , pp. 284-289
    • Miller, H.1
  • 18
    • 34250115918 scopus 로고
    • An examination of procedures for determining the number of clusters in a data set
    • G.W.Milligan, and M.C.Cooper,, 1985. An examination of procedures for determining the number of clusters in a data set. Psychometrika, 50 (2), 159–179. doi:10.1007/BF02294245
    • (1985) Psychometrika , vol.50 , Issue.2 , pp. 159-179
    • Milligan, G.W.1    Cooper, M.C.2
  • 19
    • 84881223621 scopus 로고    scopus 로고
    • Semantic trajectories modeling and analysis
    • C.Parent,, et al., 2013. Semantic trajectories modeling and analysis. ACM Computing Surveys, 45 (4), 42. doi:10.1145/2501654.2501656
    • (2013) ACM Computing Surveys , vol.45 , Issue.4 , pp. 42
    • Parent, C.1
  • 20
  • 21
    • 84907591712 scopus 로고    scopus 로고
    • A new insight into land use classification based on aggregated mobile phone data
    • T.Pei,, et al., 2014. A new insight into land use classification based on aggregated mobile phone data. International Journal of Geographical Information Science, 28 (9), 1988–2007. doi:10.1080/13658816.2014.913794
    • (2014) International Journal of Geographical Information Science , vol.28 , Issue.9 , pp. 1988-2007
    • Pei, T.1
  • 22
    • 78650220023 scopus 로고    scopus 로고
    • Redrawing the map of Great Britain from a network of human interactions
    • C.Ratti,, et al., 2010. Redrawing the map of Great Britain from a network of human interactions. PLoS ONE, 5 (12), e14248. doi:10.1371/journal.pone.0014248
    • (2010) PLoS ONE , vol.5 , Issue.12 , pp. 14248
    • Ratti, C.1
  • 23
    • 70350654032 scopus 로고    scopus 로고
    • Eigenplaces: analysing cities using the space-time structure of the mobile phone network
    • J.Reades,, F.Calabrese,, and C.Ratti,, 2009. Eigenplaces: analysing cities using the space-time structure of the mobile phone network. Environment and Planning B: Planning and Design, 36 (5), 824–836. doi:10.1068/b34133t
    • (2009) Environment and Planning B: Planning and Design , vol.36 , Issue.5 , pp. 824-836
    • Reades, J.1    Calabrese, F.2    Ratti, C.3
  • 25
    • 84926144966 scopus 로고    scopus 로고
    • Human mobility patterns in different communities: a mobile phone data-based social network approach
    • L.Shi,, et al., 2015. Human mobility patterns in different communities: a mobile phone data-based social network approach. Annals of GIS, 21 (1), 15–26. doi:10.1080/19475683.2014.992372
    • (2015) Annals of GIS , vol.21 , Issue.1 , pp. 15-26
    • Shi, L.1
  • 26
    • 77149139158 scopus 로고    scopus 로고
    • Limits of predictability in human mobility
    • C.Song,, et al., 2010. Limits of predictability in human mobility. Science, 327 (5968), 1018–1021. doi:10.1126/science.1177170
    • (2010) Science , vol.327 , Issue.5968 , pp. 1018-1021
    • Song, C.1
  • 27
  • 28
    • 84948097234 scopus 로고    scopus 로고
    • Proceedings of the 1st workshop on pervasive urban applications, in conjunction with 9th international conference onpervasive computing, June, San Francisco, CA:
    • V.Soto, and E.Frias-Martinez,, 2011b. Robust land use characterization of urban landscapes using cell phone data. In: Proceedings of the 1st workshop on pervasive urban applications, in conjunction with 9th international conference onpervasive computing, 12–15 June, San Francisco, CA, 1–8.
    • (2011) Robust land use characterization of urban landscapes using cell phone data , pp. 1-8
    • Soto, V.1    Frias-Martinez, E.2
  • 29
    • 78649529039 scopus 로고    scopus 로고
    • The structure of borders in a small world
    • C.Thiemann,, et al., 2010. The structure of borders in a small world. PLoS ONE, 5 (11), e15422. doi:10.1371/journal.pone.0015422
    • (2010) PLoS ONE , vol.5 , Issue.11 , pp. 15422
    • Thiemann, C.1
  • 30
    • 84866008013 scopus 로고    scopus 로고
    • Proceedings of the ACM SIGKDD international workshop on urbancomputing
    • J.L.Toole,, et al., 2012. Inferring land use from mobile phone activity. In: Proceedings of the ACM SIGKDD international workshop on urbancomputing, 12 August, Beijing, 1–8.
    • (2012) Inferring land use from mobile phone activity , pp. 1-8
    • Toole, J.L.1
  • 31
    • 84871806481 scopus 로고    scopus 로고
    • Understanding road usage patterns in urban areas
    • P.Wang,, et al., 2012. Understanding road usage patterns in urban areas. Scientific Reports, 2, 1001.
    • (2012) Scientific Reports , vol.2 , pp. 1001
    • Wang, P.1
  • 32
    • 84901268803 scopus 로고    scopus 로고
    • Intra-urban human mobility and activity transition: evidence from social media check-in data
    • L.Wu,, et al., 2014. Intra-urban human mobility and activity transition: evidence from social media check-in data. PLoS ONE, 9 (5), e97010. doi:10.1371/journal.pone.0097010
    • (2014) PLoS ONE , vol.9 , Issue.5 , pp. 97010
    • Wu, L.1
  • 34
    • 84922667035 scopus 로고    scopus 로고
    • Zooming into individuals to understand the collective: A review of trajectory-based travel behaviour studies
    • Y.Yue,, et al., 2014. Zooming into individuals to understand the collective: A review of trajectory-based travel behaviour studies. Travel Behaviour and Society, 1 (2), 69–78. doi:10.1016/j.tbs.2013.12.002
    • (2014) Travel Behaviour and Society , vol.1 , Issue.2 , pp. 69-78
    • Yue, Y.1
  • 35
    • 80054052524 scopus 로고    scopus 로고
    • Proceedings of the 13th internationalconference on ubiquitous computing
    • Y.Zheng,, et al., 2011. Urban computing with taxicabs. In: Proceedings of the 13th internationalconference on ubiquitous computing, 17 September, Beijing, 89–98.
    • (2011) Urban computing with taxicabs , pp. 89-98
    • Zheng, Y.1
  • 36
    • 84912523187 scopus 로고    scopus 로고
    • Detecting the dynamics of urban structure through spatial network analysis
    • C.Zhong,, et al., 2014. Detecting the dynamics of urban structure through spatial network analysis. International Journal of Geographical Information Science, 28 (11), 2178–2199. doi:10.1080/13658816.2014.914521
    • (2014) International Journal of Geographical Information Science , vol.28 , Issue.11 , pp. 2178-2199
    • Zhong, C.1
  • 37
    • 84925115292 scopus 로고    scopus 로고
    • Functionally critical locations in an urban transportation network: identification and space–time analysis using taxi trajectories
    • Y.Zhou,, et al., 2015. Functionally critical locations in an urban transportation network: identification and space–time analysis using taxi trajectories. Computers, Environment and Urban Systems, 52, 34–47. doi:10.1016/j.compenvurbsys.2015.03.001
    • (2015) Computers, Environment and Urban Systems , vol.52 , pp. 34-47
    • Zhou, Y.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.