메뉴 건너뛰기




Volumn 1572, Issue , 1999, Pages 50-62

Hardness results for neural network approximation problems

Author keywords

[No Author keywords available]

Indexed keywords

COMPUTATION THEORY; LINEAR NETWORKS; NETWORK LAYERS;

EID: 84947735552     PISSN: 03029743     EISSN: 16113349     Source Type: Book Series    
DOI: 10.1007/3-540-49097-3_5     Document Type: Conference Paper
Times cited : (21)

References (19)
  • 1
    • 0031119485 scopus 로고    scopus 로고
    • Hardness of approximate optima in lattices, codes, and linear systems
    • Sanjeev Arora, Laszlo Babai, Jacques Stern, and Z. Sweedyk. Hardness of approximate optima in lattices, codes, and linear systems. Journal of Computer and System Sciences, 54(2): 317-331, 1997.
    • (1997) Journal of Computer and System Sciences , vol.54 , Issue.2 , pp. 317-331
    • Arora, S.1    Babai, L.2    Stern, J.3    Sweedyk, Z.4
  • 2
    • 0002142606 scopus 로고
    • On learning a union of half-spaces
    • Eric B. Baum. On learning a union of half-spaces. Journal of Complexity, 6: 67-101, 1990.
    • (1990) Journal of Complexity , vol.6 , pp. 67-101
    • Baum, E.B.1
  • 3
    • 0026453958 scopus 로고
    • Training a 3-node neural network is NP-complete
    • A. L. Blum and R. L. Rivest. Training a 3-node neural network is NP-complete. Neural Networks, 5(1): 117-127, 1992.
    • (1992) Neural Networks , vol.5 , Issue.1 , pp. 117-127
    • Blum, A.L.1    Rivest, R.L.2
  • 4
    • 0029408426 scopus 로고
    • On the complexity of training neural networks with continuous activation functions
    • Bhaskar DasGupta, Hava T. Siegelmann, and Eduardo D. Sontag. On the complexity of training neural networks with continuous activation functions. IEEE Transactions on Neural Networks, 6(6): 1490-1504, 1995.
    • (1995) IEEE Transactions on Neural Networks , vol.6 , Issue.6 , pp. 1490-1504
    • DasGupta, B.1    Siegelmann, H.T.2    Sontag, E.D.3
  • 5
    • 0027632576 scopus 로고
    • Strong universal consistency of neural network classifiers
    • András Faragó and Gabor Lugosi. Strong universal consistency of neural network classifiers. IEEE Transactions on Information Theory, 39(4): 1146-1151, 1993.
    • (1993) IEEE Transactions on Information Theory , vol.39 , Issue.4 , pp. 1146-1151
    • Faragó, A.1    Lugosi, G.2
  • 7
    • 0002192516 scopus 로고
    • Decision theoretic generalizations of the PAC model for neural net and other learning applications
    • September
    • D. Haussler. Decision theoretic generalizations of the PAC model for neural net and other learning applications. Inform. Comput., 100(1): 78-150, September 1992.
    • (1992) Inform. Comput , vol.100 , Issue.1 , pp. 78-150
    • Haussler, D.1
  • 10
    • 0030736446 scopus 로고    scopus 로고
    • The computational intractability of training sigmoidal neural networks
    • Lee K. Jones. The computational intractability of training sigmoidal neural networks. IEEE Transactions on Information Theory, 43(1): 167-713, 1997.
    • (1997) IEEE Transactions on Information Theory , vol.43 , Issue.1 , pp. 167-713
    • Jones, L.K.1
  • 14
  • 15
    • 0028514351 scopus 로고
    • On the hardness of approximating minimization problems
    • Carsten Lund and Mihalis Yannakakis. On the hardness of approximating minimization problems. Journal of the ACM, 41(5): 960-981, 1994.
    • (1994) Journal of the ACM , vol.41 , Issue.5 , pp. 960-981
    • Lund, C.1    Yannakakis, M.2
  • 16
    • 0000832228 scopus 로고
    • On the complexity of polyhedral separability
    • Nimrod Megiddo. On the complexity of polyhedral separability. Discrete Computational Geometry, 3: 325-337, 1988.
    • (1988) Discrete Computational Geometry , vol.3 , pp. 325-337
    • Megiddo, N.1
  • 18
    • 0001326115 scopus 로고
    • The hardness of approximation: Gap location
    • Erez Petrank. The hardness of approximation: Gap location. Computational Complexity, 4(2): 133-157, 1994.
    • (1994) Computational Complexity , vol.4 , Issue.2 , pp. 133-157
    • Petrank, E.1
  • 19
    • 0005811345 scopus 로고    scopus 로고
    • On the infeasibility of training neural networks with small squared errors
    • Michael I. Jordan, Michael J. Kearns, and Sara A. Solla, editors,. The MIT Press
    • Van H. Vu. On the infeasibility of training neural networks with small squared errors. In Michael I. Jordan, Michael J. Kearns, and Sara A. Solla, editors, Advances in Neural Information Processing Systems, volume 10, pages 371-377. The MIT Press, 1998.
    • (1998) Advances in Neural Information Processing Systems , vol.10 , pp. 371-377
    • Vu, V.H.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.