메뉴 건너뛰기




Volumn 5, Issue , 2015, Pages

Combined Mapping of Multiple clUsteriNg ALgorithms (COMMUNAL): A Robust Method for Selection of Cluster Number, K

Author keywords

[No Author keywords available]

Indexed keywords

ALGORITHM; BIOLOGY; CLUSTER ANALYSIS; COMPUTER SIMULATION; GENETIC DATABASE; GENETICS; HUMAN; HUMAN GENOME; NEOPLASM; PROCEDURES; REPRODUCIBILITY;

EID: 84947550092     PISSN: None     EISSN: 20452322     Source Type: Journal    
DOI: 10.1038/srep16971     Document Type: Article
Times cited : (16)

References (30)
  • 1
    • 73649123907 scopus 로고    scopus 로고
    • Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1
    • Verhaak, R. G. et al. Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell 17, 98-110, doi: 10.1016/j.ccr.2009.12.020 (2010).
    • (2011) Cancer Cell , vol.17 , pp. 98-110
    • Verhaak, R.G.1
  • 2
    • 33644820339 scopus 로고    scopus 로고
    • Molecular subclasses of high-grade glioma predict prognosis, delineate a pattern of disease progression, and resemble stages in neurogenesis
    • Phillips, H. S. et al. Molecular subclasses of high-grade glioma predict prognosis, delineate a pattern of disease progression, and resemble stages in neurogenesis. Cancer Cell 9, 157-173, doi: 10.1016/j.ccr.2006.02.019 (2006).
    • (2006) Cancer Cell , vol.9 , pp. 157-173
    • Phillips, H.S.1
  • 3
    • 84884685531 scopus 로고    scopus 로고
    • Network signatures of survival in glioblastoma multiforme
    • Patel, V. N. et al. Network signatures of survival in glioblastoma multiforme. PLoS Comput Biol 9, e1003237, doi: 10.1371/journal. pcbi.1003237 (2013).
    • (2013) PLoS Comput Biol , vol.9 , pp. e1003237
    • Patel, V.N.1
  • 4
    • 0023453329 scopus 로고
    • Silhouettes a graphical aid to the interpretation and validation of Cluster Analysis
    • Rousseeuw, P. Silhouettes: A Graphical Aid to the Interpretation and Validation of Cluster Analysis. Computational and Applied Mathematics 20, 53-65 (1987).
    • (1987) Computational and Applied Mathematics , vol.20 , pp. 53-65
    • Rousseeuw, P.1
  • 5
    • 77954182362 scopus 로고    scopus 로고
    • Consensus Cluster Plus: A class discovery tool with confidence assessments and item tracking
    • Wilkerson, M. D. & Hayes, D. N. ConsensusClusterPlus: A class discovery tool with confidence assessments and item tracking. Bioinformatics 26, 1572-1573, doi: 10.1093/bioinformatics/btq170 (2010).
    • (2011) Bioinformatics , vol.26 , pp. 1572-1573
    • Wilkerson, M.D.1    Hayes, D.N.2
  • 6
    • 0042384763 scopus 로고    scopus 로고
    • Hybrid clustering of gene expression data with visualization and the bootstrap
    • Laan, M. & Pollard, K. Hybrid clustering of gene expression data with visualization and the bootstrap. Journal of Statistical Planning and Infererence 117, 275-303 (2003).
    • (2003) Journal of Statistical Planning and Infererence , vol.117 , pp. 275-303
    • Laan, M.1    Pollard, K.2
  • 11
    • 0035108235 scopus 로고    scopus 로고
    • A hierarchical unsupervised growing neural network for clustering gene expression patterns
    • Herrero, J., Valencia, A. & Dopazo, J. A hierarchical unsupervised growing neural network for clustering gene expression patterns. Bioinformatics 17, 126-136, doi: 10.1093/bioinformatics/17.2.126 (2001).
    • (2001) Bioinformatics , vol.17 , pp. 126-136
    • Herrero, J.1    Valencia, A.2    Dopazo, J.3
  • 12
    • 84947575400 scopus 로고    scopus 로고
    • accessed 10-15-2015
    • Hennig, C. R package fpc (http://cran.r-project.org/web/packages/fpc/, accessed 10-15-2015).
    • R Package Fpc
    • Hennig, C.1
  • 13
    • 84877255806 scopus 로고
    • A dendrite method for cluster analysis
    • Calinski, T. A Dendrite Method for Cluster Analysis. Biometrics 24, 207-& (1968).
    • (1968) Biometrics , vol.24 , pp. 207
    • Calinski, T.1
  • 14
    • 25144456056 scopus 로고    scopus 로고
    • Computational cluster validation in post-genomic data analysis
    • Handl, J., Knowles, J. & Kell, D. Computational cluster validation in post-genomic data analysis. Bioinformatics 21, 3201-3212, doi: 10.1093/bioinformatics/bti517 (2005).
    • (2005) Bioinformatics , vol.21 , pp. 3201-3212
    • Handl, J.1    Knowles, J.2    Kell, D.3
  • 16
    • 33947156744 scopus 로고    scopus 로고
    • Comparing clusterings-An information based distance
    • Meila, M. Comparing clusterings-An information based distance. Journal of Multivariate Analysis 98, 873-895, doi: 10.1016/j. jmva.2006.11.013 (2007).
    • (2007) Journal of Multivariate Analysis , vol.98 , pp. 873-895
    • Meila, M.1
  • 17
    • 34250115918 scopus 로고
    • An examination of procedures for determining the number of clusters in a data set
    • Milligan, G. & Cooper, M. An Examination of Procedures for Determining the number of Clusters in a Data Set. Psychometrika 50, 159-179, doi: 10.1007/BF02294245 (1985).
    • (1985) Psychometrika , vol.50 , pp. 159-179
    • Milligan, G.1    Cooper, M.2
  • 18
    • 0004241258 scopus 로고    scopus 로고
    • 2nd edn Chapman & Hall/CRC
    • Gordon, A. D. Classification. 2nd edn, (Chapman & Hall/CRC, 1999).
    • (1999) Classification
    • Gordon, A.D.1
  • 19
    • 84876143910 scopus 로고    scopus 로고
    • How to find an appropriate clustering for mixed-Type variables with application to socio-economic stratification
    • Hennig, C. & Liao, T. How to find an appropriate clustering for mixed-Type variables with application to socio-economic stratification. Journal of the Royal Statistical Society Series C-Applied Statistics 62, 309-369, doi: 10.1111/j.1467-9876.2012.01066.x (2013).
    • (2013) Journal of the Royal Statistical Society Series C-Applied Statistics , vol.62 , pp. 309-369
    • Hennig, C.1    Liao, T.2
  • 22
    • 77956705120 scopus 로고    scopus 로고
    • Simulating data to study performance of finite mixture modelingand clustering algorithms
    • Maitra, R. & Melnykov, V. Simulating data to study performance of finite mixture modelingand clustering algorithms. The Journal of Computational and Graphical Statistics 2(19), 354-376 (2010).
    • (2011) The Journal of Computational and Graphical Statistics , vol.2 , Issue.19 , pp. 354-376
    • Maitra, R.1    Melnykov, V.2
  • 23
    • 0033569406 scopus 로고    scopus 로고
    • Molecular classification of cancer: Class discovery and class prediction by gene expression monitoring
    • Golub, T. R. et al. Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science 286, 531-537 (1999).
    • (1999) Science , vol.286 , pp. 531-537
    • Golub, T.R.1
  • 24
    • 77954069195 scopus 로고    scopus 로고
    • A flexible R package for nonnegative matrix factorization
    • Gaujoux, R. & Seoighe, C. A flexible R package for nonnegative matrix factorization. BMC Bioinformatics 11, 367, doi: 10.1186/1471-2105-11-367 (2010).
    • (2011) BMC Bioinformatics , vol.11 , pp. 367
    • Gaujoux, R.1    Seoighe, C.2
  • 25
    • 84877028141 scopus 로고    scopus 로고
    • Comprehensive molecular portraits of human breast tumours
    • Cancer Genome Atlas Network
    • Cancer Genome Atlas Network. Comprehensive molecular portraits of human breast tumours. Nature 490, 61-70, doi: 10.1038/nature11412 (2012).
    • (2012) Nature , vol.490 , pp. 61-70
  • 26
    • 84863922124 scopus 로고    scopus 로고
    • Comprehensive molecular characterization of human colon and rectal cancer
    • Cancer Genome Atlas Network
    • Cancer Genome Atlas Network. Comprehensive molecular characterization of human colon and rectal cancer. Nature 487, 330-337, doi: 10.1038/nature11252 (2012).
    • (2012) Nature , vol.487 , pp. 330-337
  • 27
    • 54549108740 scopus 로고    scopus 로고
    • Comprehensive genomic characterization defines human glioblastoma genes and core pathways
    • Cancer Genome Atlas Research Network
    • Cancer Genome Atlas Research Network. Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature 455, 1061-1068, doi: 10.1038/nature07385 (2008).
    • (2008) Nature , vol.455 , pp. 1061-1068
  • 28
    • 84879890360 scopus 로고    scopus 로고
    • Comprehensive molecular characterization of clear cell renal cell carcinoma
    • Cancer Genome Atlas Research Network
    • Cancer Genome Atlas Research Network. Comprehensive molecular characterization of clear cell renal cell carcinoma. Nature 499, 43-49, doi: 10.1038/nature12222 (2013).
    • (2013) Nature , vol.499 , pp. 43-49
  • 29
    • 84866894408 scopus 로고    scopus 로고
    • Comprehensive genomic characterization of squamous cell lung cancers
    • Cancer Genome Atlas Research Network
    • Cancer Genome Atlas Research Network. Comprehensive genomic characterization of squamous cell lung cancers. Nature 489, 519-525, doi: 10.1038/nature11404 (2012).
    • (2012) Nature , vol.489 , pp. 519-525
  • 30
    • 79959838081 scopus 로고    scopus 로고
    • Integrated genomic analyses of ovarian carcinoma
    • Cancer Genome Atlas Research Network
    • Cancer Genome Atlas Research Network. Integrated genomic analyses of ovarian carcinoma. Nature 474, 609-615, doi: 10.1038/nature10166 (2011).
    • (2011) Nature , vol.474 , pp. 609-615


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.