-
1
-
-
84947426461
-
Bayesian predictive models for ovarian cancer classification: Evaluation of logistic regresseion, multi-layer perceptron and belief network models in the bayesian context
-
P. Antal, G. Fannes, S. Van Huffel, B. De Moor, J. Vandewalle, and Dirk Timmerman, Bayesian predictive models for ovarian cancer classification: evaluation of logistic regresseion, multi-layer perceptron and belief network models in the bayesian context, Proceedings of the Tenth Belgian-Dutch Conference on Machine Learning, BENELEARN 2000, 2000, pp. 125-132.
-
(2000)
Proceedings of the Tenth Belgian-Dutch Conference on Machine Learning, BENELEARN 2000
, pp. 125-132
-
-
Antal, P.1
Fannes, G.2
Van Huffel, S.3
De Moor, B.4
Vandewalle, J.5
Timmerman, D.6
-
2
-
-
0042700747
-
Incorporation of prior knowledge in black-box models: Comparison of transformation methods from bayesian network to multilayer perceptrons
-
P. Antal, G. Fannes, H. Verrelst, B. De Moor, and J. Vandewalle, Incorporation of prior knowledge in black-box models: Comparison of transformation methods from bayesian network to multilayer perceptrons, Workshop on Fusion of Domain Knowledge with Data for Decision Support, 16th UAI Conf., 2000, pp. 42-48.
-
(2000)
Workshop on Fusion of Domain Knowledge with Data for Decision Support, 16Th UAI Conf.
, pp. 42-48
-
-
Antal, P.1
Fannes, G.2
Verrelst, H.3
De Moor, B.4
Vandewalle, J.5
-
3
-
-
0033713172
-
Bayesian networks in ovarian cancer diagnosis: Potential and limitations
-
Houston
-
P. Antal, H. Verrelst, D. Timmerman, Y. Moreau, S. Van Huffel, B. De Moor, and I. Vergote, Bayesian networks in ovarian cancer diagnosis: Potential and limitations, Proc. of the 13th IEEE Symp. on Comp.-Based Med.Sys., 2000, Houston, pp. 103-109.
-
(2000)
Proc. Of the 13Th IEEE Symp. On Comp.-Based Med.Sys
, pp. 103-109
-
-
Antal, P.1
Verrelst, H.2
Timmerman, D.3
Moreau, Y.4
Van Huffel, S.5
De Moor, B.6
Vergote, I.7
-
6
-
-
84972488038
-
Bayesian analysis in expert systems
-
D.J. Spiegelhalter et al., Bayesian analysis in expert systems, Statistical Science 8 (1993), no. 3, 219-283.
-
(1993)
Statistical Science
, vol.8
, Issue.3
, pp. 219-283
-
-
Spiegelhalter, D.J.1
-
7
-
-
0032977423
-
Artificial neural network models for the pre-operative discrimination between malignant and benign adnexal masses
-
Gynecol
-
D. Timmerman et al., Artificial neural network models for the pre-operative discrimination between malignant and benign adnexal masses, Ultrasound Obstet. Gynecol. 13 (1999), 17-25.
-
(1999)
Ultrasound Obstet
, vol.13
, pp. 17-25
-
-
Timmerman, D.1
-
8
-
-
0020083498
-
The meaning and use of the area under receiver operating characteristic (Roc) curve
-
J.A. Hanley et al., The meaning and use of the area under receiver operating characteristic (roc) curve, Radiology 143 (1982), 29-36.
-
(1982)
Radiology
, vol.143
, pp. 29-36
-
-
Hanley, J.A.1
-
9
-
-
84981748011
-
-
Bayesian theory, Wiley & Sons
-
J.M. Bernardo et al., Bayesian theory, Wiley & Sons, 1995.
-
(1995)
-
-
Bernardo, J.M.1
-
10
-
-
0004012196
-
-
Chapman & Hall
-
A. Gelman, J.B. Carlin, H.S. Stern., and D.B. Rubin, Bayesian data analysis, Chapman & Hall, 1995.
-
(1995)
Bayesian Data Analysis
-
-
Gelman, A.1
Carlin, J.B.2
Stern, H.S.3
Rubin, D.B.4
-
11
-
-
0027205884
-
A scaled conjugate gradient algorithm for fast supervised learning
-
M.F. Moller, A scaled conjugate gradient algorithm for fast supervised learning, Neural Networks 6 (1993), 525-533.
-
(1993)
Neural Networks
, vol.6
, pp. 525-533
-
-
Moller, M.F.1
-
12
-
-
0347128520
-
Issues in bayesian analysis of neural network models
-
P. Müller and R.D. Insua, Issues in bayesian analysis of neural network models, Neural Computation 10 (1998), 571-592.
-
(1998)
Neural Computation
, vol.10
, pp. 571-592
-
-
Müller, P.1
Insua, R.D.2
|