메뉴 건너뛰기




Volumn 124, Issue , 2016, Pages 22-27

Forecasting hourly PM2.5 in Santiago de Chile with emphasis on night episodes

Author keywords

Air quality forecasting; Meteorology forecast; Neural networks; Particulate matter; PM2.5

Indexed keywords

AIR QUALITY; FORECASTING; NEURAL NETWORKS; PARTICLES (PARTICULATE MATTER);

EID: 84947280987     PISSN: 13522310     EISSN: 18732844     Source Type: Journal    
DOI: 10.1016/j.atmosenv.2015.11.016     Document Type: Article
Times cited : (78)

References (27)
  • 3
    • 79953245284 scopus 로고    scopus 로고
    • Using statistical regressions to identify factors influencing PM2.5 concentrations: the Pittsburgh supersite as a case study
    • Chu N., Kadane J.B., Davidson C.I. Using statistical regressions to identify factors influencing PM2.5 concentrations: the Pittsburgh supersite as a case study. Aerosol Sci. Technol. 2010, 44:766-774.
    • (2010) Aerosol Sci. Technol. , vol.44 , pp. 766-774
    • Chu, N.1    Kadane, J.B.2    Davidson, C.I.3
  • 4
    • 77954313823 scopus 로고    scopus 로고
    • An enhanced PM2.5 air quality forecast model based on nonlinear régression and back- trajectory concentrations
    • Cobourn W.G. An enhanced PM2.5 air quality forecast model based on nonlinear régression and back- trajectory concentrations. Atmos. Environ. 2010, 44:3015-3023.
    • (2010) Atmos. Environ. , vol.44 , pp. 3015-3023
    • Cobourn, W.G.1
  • 6
    • 84906994568 scopus 로고    scopus 로고
    • Particle size distribution and its relationship to black carbon in two urban and one rural site in Santiago de Chile
    • Gramsch E., Reyes F., Oyola P., Rubio M.A., López G., Pérez P., Martínez R. Particle size distribution and its relationship to black carbon in two urban and one rural site in Santiago de Chile. J. Air Waste Manag. Assoc. 2014, 64(7):785-796.
    • (2014) J. Air Waste Manag. Assoc. , vol.64 , Issue.7 , pp. 785-796
    • Gramsch, E.1    Reyes, F.2    Oyola, P.3    Rubio, M.A.4    López, G.5    Pérez, P.6    Martínez, R.7
  • 7
    • 31044433834 scopus 로고    scopus 로고
    • Artificial neural network models for prediction of PM10 hourly concentrations, in the Greater Area of Athens, Greece
    • Grivas G., Chaloulakou A. Artificial neural network models for prediction of PM10 hourly concentrations, in the Greater Area of Athens, Greece. Atmos. Environ. 2006, 40(7):1216-1229.
    • (2006) Atmos. Environ. , vol.40 , Issue.7 , pp. 1216-1229
    • Grivas, G.1    Chaloulakou, A.2
  • 8
    • 84864751063 scopus 로고    scopus 로고
    • Source apportionment of PM2.5 in Santiago, Chile: 1999 and 2004 results
    • Jorquera H., Barraza F. Source apportionment of PM2.5 in Santiago, Chile: 1999 and 2004 results. Sci. Total Environ. 2012, 435-436:418-429.
    • (2012) Sci. Total Environ. , vol.435-436 , pp. 418-429
    • Jorquera, H.1    Barraza, F.2
  • 9
    • 84908317965 scopus 로고    scopus 로고
    • A review on the human health impact of airborne particulate matter
    • Kim K.-H., Kabir E., Kabir S. A review on the human health impact of airborne particulate matter. Environ. Int. 2015, 74:136-143.
    • (2015) Environ. Int. , vol.74 , pp. 136-143
    • Kim, K.-H.1    Kabir, E.2    Kabir, S.3
  • 10
    • 70749123472 scopus 로고    scopus 로고
    • Combining deterministic and statistical approaches for PM10 forecasting in Europe
    • Konovalov I.B., Beekmann M., Meleux F., Dutot A., Foret G. Combining deterministic and statistical approaches for PM10 forecasting in Europe. Atmos. Environ. 2009, 43:6425-6434.
    • (2009) Atmos. Environ. , vol.43 , pp. 6425-6434
    • Konovalov, I.B.1    Beekmann, M.2    Meleux, F.3    Dutot, A.4    Foret, G.5
  • 12
    • 84947242244 scopus 로고    scopus 로고
    • MMA, 2011. http://www.sinia.cl/1292/articles-47699_recurso_2.pdf.
    • (2011)
  • 13
    • 84947270392 scopus 로고    scopus 로고
    • MMA, 2014. http://www.sinia.cl/1292/articles-56914_Inf_Inventarios_FINAL.pdf.
    • (2014)
  • 14
    • 84907070869 scopus 로고    scopus 로고
    • Application of a statistical post- processing technique to a gridded, operational, air quality forecast
    • Neal L.S., Agnew P., Moseley S., Ordoñez C., Savage N.H., Tilbee M. Application of a statistical post- processing technique to a gridded, operational, air quality forecast. Atmos. Environ. 2014, 98:385-393.
    • (2014) Atmos. Environ. , vol.98 , pp. 385-393
    • Neal, L.S.1    Agnew, P.2    Moseley, S.3    Ordoñez, C.4    Savage, N.H.5    Tilbee, M.6
  • 15
    • 9944223325 scopus 로고    scopus 로고
    • Neural network prediction model for fine particulate matter (PM2.5) on the US-Mexico border in El Paso (Texas) and Ciudad Juarez (Chihuahua)
    • Ordieres J.B., Vergara E.P., Capuz R.S., Salazar R.E. Neural network prediction model for fine particulate matter (PM2.5) on the US-Mexico border in El Paso (Texas) and Ciudad Juarez (Chihuahua). Environ. Model. Softw. 2005, 20:547-559.
    • (2005) Environ. Model. Softw. , vol.20 , pp. 547-559
    • Ordieres, J.B.1    Vergara, E.P.2    Capuz, R.S.3    Salazar, R.E.4
  • 16
    • 84881313051 scopus 로고    scopus 로고
    • Forecasting hourly roadside particulate matter in Taipei county of Taiwan based on first- order and one variable grey model
    • Pai T.J., Hanaki K., Chiou R.J. Forecasting hourly roadside particulate matter in Taipei county of Taiwan based on first- order and one variable grey model. Clean Soil Air Water 2013, 41(8):737-742.
    • (2013) Clean Soil Air Water , vol.41 , Issue.8 , pp. 737-742
    • Pai, T.J.1    Hanaki, K.2    Chiou, R.J.3
  • 17
    • 0343339858 scopus 로고    scopus 로고
    • Prediction of PM2.5 concentrations several hours in advance using neural networks in Santiago, Chile
    • Perez P., Trier A., Reyes J. Prediction of PM2.5 concentrations several hours in advance using neural networks in Santiago, Chile. Atmos. Environ. 2000, 34:1189-1196.
    • (2000) Atmos. Environ. , vol.34 , pp. 1189-1196
    • Perez, P.1    Trier, A.2    Reyes, J.3
  • 18
    • 33645798115 scopus 로고    scopus 로고
    • An integrated neural network model for PM10 forecasting
    • Perez P., Reyes J. An integrated neural network model for PM10 forecasting. Atmos. Environ. 2006, 40:2845-2851.
    • (2006) Atmos. Environ. , vol.40 , pp. 2845-2851
    • Perez, P.1    Reyes, J.2
  • 19
    • 53749089242 scopus 로고    scopus 로고
    • PM2.5 forecasting in a large city: comparison of three methods
    • Perez P., Salini G. PM2.5 forecasting in a large city: comparison of three methods. Atmos. Environ. 2008, 42:8219-8224.
    • (2008) Atmos. Environ. , vol.42 , pp. 8219-8224
    • Perez, P.1    Salini, G.2
  • 20
    • 80052290632 scopus 로고    scopus 로고
    • A wavelet-based neural network model to predict ambient air pollutants' concentration
    • Prakash A., Kumar U., Kumar K. A wavelet-based neural network model to predict ambient air pollutants' concentration. Environ. Model Assess. 2011, 16:503-517.
    • (2011) Environ. Model Assess. , vol.16 , pp. 503-517
    • Prakash, A.1    Kumar, U.2    Kumar, K.3
  • 21
    • 0028974491 scopus 로고
    • Meteorological air pollution potential for Santiago, Chile: towards an objective episode forecasting
    • Ruttlant J., Garreaud R. Meteorological air pollution potential for Santiago, Chile: towards an objective episode forecasting. Environ. Monit. Assess. 1995, 34:223-244.
    • (1995) Environ. Monit. Assess. , vol.34 , pp. 223-244
    • Ruttlant, J.1    Garreaud, R.2
  • 22
    • 84882768416 scopus 로고    scopus 로고
    • Air quality prediction using optimal neural networks with stochastic variables
    • Russo A., Raischel F., Lind P. Air quality prediction using optimal neural networks with stochastic variables. Atmos. Environ. 2013, 79:822-830.
    • (2013) Atmos. Environ. , vol.79 , pp. 822-830
    • Russo, A.1    Raischel, F.2    Lind, P.3
  • 24
    • 84869884924 scopus 로고    scopus 로고
    • Prediction of 24-hour average PM2.5 concentrations using a hidden Markov model with different emission distributions in Northern California
    • Sun W., Zhang H., Palazoglu A., Singh A., Zhang W., Liu S. Prediction of 24-hour average PM2.5 concentrations using a hidden Markov model with different emission distributions in Northern California. Sci. Total Environ. 2013, 443:93-103.
    • (2013) Sci. Total Environ. , vol.443 , pp. 93-103
    • Sun, W.1    Zhang, H.2    Palazoglu, A.3    Singh, A.4    Zhang, W.5    Liu, S.6
  • 25
    • 34247466894 scopus 로고    scopus 로고
    • Model for forecasting expressway fine particulate matter and carbon monoxide concentrations: application of regression and neural network models
    • Thomas S., Jacko R.B. Model for forecasting expressway fine particulate matter and carbon monoxide concentrations: application of regression and neural network models. J. Air Waste Manag. Assoc. 2007, 57:480-488.
    • (2007) J. Air Waste Manag. Assoc. , vol.57 , pp. 480-488
    • Thomas, S.1    Jacko, R.B.2
  • 26
    • 79851508856 scopus 로고    scopus 로고
    • Intercomparison of air quality data using principal components analysis, and forecasting of PM10 and PM2.5 concentrations using artificial neural networks, in Thessaloniki and Helsinki
    • Voukantsis D., Karatzas K., Kukkonen J., Raesaenen T., Karpinen A., Kolehmainen M. Intercomparison of air quality data using principal components analysis, and forecasting of PM10 and PM2.5 concentrations using artificial neural networks, in Thessaloniki and Helsinki. Sci. Total Environ. 2011, 409:1266-1276.
    • (2011) Sci. Total Environ. , vol.409 , pp. 1266-1276
    • Voukantsis, D.1    Karatzas, K.2    Kukkonen, J.3    Raesaenen, T.4    Karpinen, A.5    Kolehmainen, M.6
  • 27
    • 84905443514 scopus 로고    scopus 로고
    • A hybrid model for PM2.5 forecasting based on ensemble empirical mode decomposition and a general regression neural network
    • Zhou Q., Jiang H., Wang J., Zhou J. A hybrid model for PM2.5 forecasting based on ensemble empirical mode decomposition and a general regression neural network. Sci. Total Environ. 2014, 496:264-274.
    • (2014) Sci. Total Environ. , vol.496 , pp. 264-274
    • Zhou, Q.1    Jiang, H.2    Wang, J.3    Zhou, J.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.