-
1
-
-
84902489371
-
The epidemiology of glioma in adults: A "state of the science" review
-
Ostrom, Q. T. et al. The epidemiology of glioma in adults: a "state of the science" review. Neuro-oncology 16, 896-913, doi: 10.1093/neuonc/nou087 (2014).
-
(2014)
Neuro-oncology
, vol.16
, pp. 896-913
-
-
Ostrom, Q.T.1
-
2
-
-
73649123907
-
An integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR and NF1
-
Verhaak, R. G. et al. An integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR and NF1. Cancer cell 17, 98, doi: 10.1016/j.ccr.2009.12.020 (2010).
-
(2010)
Cancer Cell
, vol.17
, pp. 98
-
-
Verhaak, R.G.1
-
3
-
-
84876887800
-
MR Imaging Predictors of Molecular Profile and Survival: Multi-institutional Study of the TCGA Glioblastoma Data Set
-
Gutman Da Fau - Cooper, L. A. D. et al. MR Imaging Predictors of Molecular Profile and Survival: Multi-institutional Study of the TCGA Glioblastoma Data Set. Radiology 267, 560-569, doi: 10.1148/radiol.13120118 (2013).
-
(2013)
Radiology
, vol.267
, pp. 560-569
-
-
Gutman, D.F.1
Cooper, L.A.D.2
-
4
-
-
84906933657
-
Identifying the survival subtypes of glioblastoma by quantitative volumetric analysis of MRI
-
Zhang, Z. et al. Identifying the survival subtypes of glioblastoma by quantitative volumetric analysis of MRI. Journal of neurooncology 119, 207-214, doi: 10.1007/s11060-014-1478-2 (2014).
-
(2014)
Journal of Neurooncology
, vol.119
, pp. 207-214
-
-
Zhang, Z.1
-
5
-
-
33644847163
-
MR imaging correlates of survival in patients with high-grade gliomas
-
Pope, W. B. et al. MR imaging correlates of survival in patients with high-grade gliomas. AJNR. American journal of neuroradiology 26, 2466-2474 (2005).
-
(2005)
AJNR. American Journal of Neuroradiology
, vol.26
, pp. 2466-2474
-
-
Pope, W.B.1
-
6
-
-
84855245306
-
Volumetric and MGMT parameters in glioblastoma patients: Survival analysis
-
Iliadis, G. et al. Volumetric and MGMT parameters in glioblastoma patients: survival analysis. BMC cancer 12, 3, doi: 10.1186/1471-2407-12-3 (2012).
-
(2012)
BMC Cancer
, vol.12
, pp. 3
-
-
Iliadis, G.1
-
7
-
-
84862508110
-
Survival analysis of patients with high-grade gliomas based on data mining of imaging variables
-
Zacharaki, E. I. et al. Survival analysis of patients with high-grade gliomas based on data mining of imaging variables. AJNR. American journal of neuroradiology 33, 1065-1071, doi: 10.3174/ajnr.A2939 (2012).
-
(2012)
AJNR. American Journal of Neuroradiology
, vol.33
, pp. 1065-1071
-
-
Zacharaki, E.I.1
-
8
-
-
42449156691
-
Identification of noninvasive imaging surrogates for brain tumor gene-expression modules
-
Diehn, M. et al. Identification of noninvasive imaging surrogates for brain tumor gene-expression modules. Proceedings of the National Academy of Sciences of the United States of America 105, 5213-5218, doi: 10.1073/pnas.0801279105 (2008).
-
(2008)
Proceedings of the National Academy of Sciences of the United States of America
, vol.105
, pp. 5213-5218
-
-
Diehn, M.1
-
9
-
-
84877100753
-
Identifying the mesenchymal molecular subtype of glioblastoma using quantitative volumetric analysis of anatomic magnetic resonance images
-
Naeini, K. M. et al. Identifying the mesenchymal molecular subtype of glioblastoma using quantitative volumetric analysis of anatomic magnetic resonance images. Neuro-oncology 15, 626-634, doi: 10.1093/neuonc/not008 (2013).
-
(2013)
Neuro-oncology
, vol.15
, pp. 626-634
-
-
Naeini, K.M.1
-
10
-
-
53749087689
-
Relationship between gene expression and enhancement in glioblastoma multiforme: Exploratory DNA microarray analysis
-
Pope, W. B. et al. Relationship between gene expression and enhancement in glioblastoma multiforme: exploratory DNA microarray analysis. Radiology 249, 268-277, doi: 10.1148/radiol.2491072000 (2008).
-
(2008)
Radiology
, vol.249
, pp. 268-277
-
-
Pope, W.B.1
-
11
-
-
79960349087
-
Comparison of manual and automatic segmentation methods for brain structures in the presence of space-occupying lesions: A multi-expert study
-
Deeley, M. A. et al. Comparison of manual and automatic segmentation methods for brain structures in the presence of space-occupying lesions: a multi-expert study. Physics in medicine and biology 56, 4557-4577, doi: 10.1088/0031-9155/56/14/021 (2011).
-
(2011)
Physics in Medicine and Biology
, vol.56
, pp. 4557-4577
-
-
Deeley, M.A.1
-
12
-
-
84867139157
-
QIN "Radiomics: The Process and the Challenges"
-
Kumar, V. et al. QIN "Radiomics: The Process and the Challenges". Magnetic resonance imaging 30, 1234-1248, doi: 10.1016/j.mri.2012.06.010 (2012).
-
(2012)
Magnetic Resonance Imaging
, vol.30
, pp. 1234-1248
-
-
Kumar, V.1
-
13
-
-
84857037061
-
Radiomics: Extracting more information from medical images using advanced feature analysis
-
Oxford, England: 1990
-
Lambin, P. et al. Radiomics: extracting more information from medical images using advanced feature analysis. European journal of cancer (Oxford, England: 1990) 48, 441-446, doi: 10.1016/j.ejca.2011.11.036 (2012).
-
(2012)
European Journal of Cancer
, vol.48
, pp. 441-446
-
-
Lambin, P.1
-
14
-
-
84879513272
-
A survey of MRI-based medical image analysis for brain tumor studies
-
Bauer, S., Wiest, R., Nolte, L. P. & Reyes, M. A survey of MRI-based medical image analysis for brain tumor studies. Physics in medicine and biology 58, R97-129, doi: 10.1088/0031-9155/58/13/r97 (2013).
-
(2013)
Physics in Medicine and Biology
, vol.58
, pp. R97-R129
-
-
Bauer, S.1
Wiest, R.2
Nolte, L.P.3
Reyes, M.4
-
15
-
-
84875140162
-
GBM Volumetry using the 3D Slicer Medical Image Computing Platform
-
Egger, J. et al. GBM Volumetry using the 3D Slicer Medical Image Computing Platform. Scientific Reports 3, doi: 10.1038/srep01364 (2013).
-
(2013)
Scientific Reports
, vol.3
-
-
Egger, J.1
-
16
-
-
84904264664
-
Volumetric CT-based segmentation of NSCLC using 3D-Slicer
-
Velazquez, E. R. et al. Volumetric CT-based segmentation of NSCLC using 3D-Slicer. Scientific Reports 3, doi: 10.1038/srep03529 (2013).
-
(2013)
Scientific Reports
, vol.3
-
-
Velazquez, E.R.1
-
17
-
-
84947239321
-
-
The National Cancer Institute Web site, (Date of access:01/12/2014)
-
The Cancer Imaging Archive. Wiki for the VASARI feature set. The National Cancer Institute Web site, https://wiki.cancerimagingarchive.net/display/Public/VASARI+Research+Project. (2013) (Date of access:01/12/2014).
-
(2013)
Wiki for the VASARI Feature Set
-
-
-
18
-
-
84900560566
-
Multi-Modal Glioblastoma Segmentation: Man versus Machine
-
Porz, N. et al. Multi-Modal Glioblastoma Segmentation: Man versus Machine. PloS one 9, doi: 10.1371/journal.pone.0096873 (2014).
-
(2014)
PloS One
, vol.9
-
-
Porz, N.1
-
19
-
-
84911386034
-
Computer-extracted MR imaging features are associated with survival in glioblastoma patients
-
Mazurowski, M. A., Zhang, J., Peters, K. B. & Hobbs, H. Computer-extracted MR imaging features are associated with survival in glioblastoma patients. Journal of neuro-oncology 120, 483-488, doi: 10.1007/s11060-014-1580-5 (2014).
-
(2014)
Journal of Neuro-oncology
, vol.120
, pp. 483-488
-
-
Mazurowski, M.A.1
Zhang, J.2
Peters, K.B.3
Hobbs, H.4
-
20
-
-
84896133294
-
A fully automatic extraction of magnetic resonance image features in glioblastoma patients
-
Zhang, J., Barboriak, D. P., Hobbs, H. & Mazurowski, M. A. A fully automatic extraction of magnetic resonance image features in glioblastoma patients. Medical physics 41, 042301, doi: 10.1118/1.4866218 (2014).
-
(2014)
Medical Physics
, vol.41
-
-
Zhang, J.1
Barboriak, D.P.2
Hobbs, H.3
Mazurowski, M.A.4
-
21
-
-
84947268349
-
-
The National Cancer Institute Web site, (Date of access:01/12/2014)
-
The Cancer Imaging Archive. The National Cancer Institute Web site, http://www.cancerimagingarchive.net/(2014). (Date of access:01/12/2014).
-
(2014)
-
-
-
23
-
-
84901946941
-
Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach
-
Aerts, H. J. W. L. et al. Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nat Commun 5, doi: 10.1038/ncomms5006 (2014).
-
(2014)
Nat Commun
, vol.5
-
-
Aerts, H.J.W.L.1
-
24
-
-
84908702403
-
Glioblastoma Multiforme: Exploratory Radiogenomic Analysis by Using Quantitative Image Features
-
0
-
Gevaert, O. et al. Glioblastoma Multiforme: Exploratory Radiogenomic Analysis by Using Quantitative Image Features. Radiology 0, 131731, doi: 10.1148/radiol.14131731.
-
Radiology
-
-
Gevaert, O.1
-
25
-
-
80053599063
-
Radiogenomic mapping of edema/cellular invasion MRI-phenotypes in glioblastoma multiforme
-
Zinn, P. O. et al. Radiogenomic mapping of edema/cellular invasion MRI-phenotypes in glioblastoma multiforme. PloS one 6, e25451, doi: 10.1371/journal.pone.0025451 (2011).
-
(2011)
PloS One
, vol.6
-
-
Zinn, P.O.1
-
26
-
-
84888198904
-
The Cancer Imaging Archive (TCIA): Maintaining and operating a public information repository
-
Clark, K. et al. The Cancer Imaging Archive (TCIA): maintaining and operating a public information repository. Journal of digital imaging 26, 1045-1057, doi: 10.1007/s10278-013-9622-7 (2013).
-
(2013)
Journal of Digital Imaging
, vol.26
, pp. 1045-1057
-
-
Clark, K.1
-
27
-
-
82255181699
-
Fully automatic segmentation of brain tumor images using support vector machine classification in combination with hierarchical conditional random field regularization
-
Bauer, S., Nolte, L. P. & Reyes, M. Fully automatic segmentation of brain tumor images using support vector machine classification in combination with hierarchical conditional random field regularization. Medical image computing and computer-assisted intervention: MICCAI International Conference on Medical Image Computing and Computer-Assisted Intervention 14, 354-361 (2011).
-
(2011)
Medical Image Computing and Computer-assisted Intervention: MICCAI International Conference on Medical Image Computing and Computer-Assisted Intervention
, vol.14
, pp. 354-361
-
-
Bauer, S.1
Nolte, L.P.2
Reyes, M.3
-
28
-
-
84947282317
-
-
Segmentation of Brain Tumor Images Based on Integrated Hierarchical Classification and Regularization
-
Bauer, S. et al. in Segmentation of Brain Tumor Images Based on Integrated Hierarchical Classification and Regularization. Paper presented at the Proceedings of MICCAI-BRATS (Nice, France 2012).
-
The Proceedings of MICCAI-BRATS (Nice, France 2012)
-
-
Bauer, S.1
-
31
-
-
84949210409
-
The Multimodal Brain TumorImage Segmentation Benchmark (BRATS)
-
PP, 1-1
-
Menze, B., Reyes, M. & Van Leemput, K. The Multimodal Brain TumorImage Segmentation Benchmark (BRATS). Medical Imaging, IEEE Transactions on PP, 1-1, doi: 10.1109/TMI.2014.2377694 (2014).
-
(2014)
Medical Imaging, IEEE Transactions on
-
-
Menze, B.1
Reyes, M.2
Van Leemput, K.3
-
32
-
-
0034745001
-
Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm
-
Zhang, Y., Brady, M. & Smith, S. Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm. IEEE transactions on medical imaging 20, 45-57, doi: 10.1109/42.906424 (2001).
-
(2001)
IEEE Transactions on Medical Imaging
, vol.20
, pp. 45-57
-
-
Zhang, Y.1
Brady, M.2
Smith, S.3
-
33
-
-
80755144068
-
survcomp: An R/Bioconductor package for performance assessment and comparison of survival models
-
Schroder, M. S., Culhane, A. C., Quackenbush, J. & Haibe-Kains, B. survcomp: an R/Bioconductor package for performance assessment and comparison of survival models. Bioinformatics (Oxford, England) 27, 3206-3208, doi: 10.1093/bioinformatics/btr511 (2011).
-
(2011)
Bioinformatics (Oxford, England)
, vol.27
, pp. 3206-3208
-
-
Schroder, M.S.1
Culhane, A.C.2
Quackenbush, J.3
Haibe-Kains, B.4
-
34
-
-
84883483361
-
mRMRe: An R package for parallelized mRMR ensemble feature selection
-
De Jay, N. et al. mRMRe: an R package for parallelized mRMR ensemble feature selection. Bioinformatics (Oxford, England) 29, 2365-2368 (2013).
-
(2013)
Bioinformatics (Oxford, England)
, vol.29
, pp. 2365-2368
-
-
De Jay, N.1
-
35
-
-
84929120576
-
False Discovery Rates in PET and CT Studies with Texture Features: A Systematic Review
-
Chalkidou, A., O'Doherty, M. J. & Marsden, P. K. False Discovery Rates in PET and CT Studies with Texture Features: A Systematic Review. PloS one 10, e0124165, doi: 10.1371/journal.pone.0124165 (2015).
-
(2015)
PloS One
, vol.10
-
-
Chalkidou, A.1
O'Doherty, M.J.2
Marsden, P.K.3
-
36
-
-
84909599506
-
Patient-specific semi-supervised learning for postoperative brain tumor segmentation
-
Meier, R., Bauer, S., Slotboom, J., Wiest, R. & Reyes, M. Patient-specific semi-supervised learning for postoperative brain tumor segmentation. Medical image computing and computer-assisted intervention: MICCAI International Conference on Medical Image Computing and Computer-Assisted Intervention 17, 714-721 (2014).
-
(2014)
Medical Image Computing and Computer-assisted Intervention: MICCAI International Conference on Medical Image Computing and Computer-Assisted Intervention
, vol.17
, pp. 714-721
-
-
Meier, R.1
Bauer, S.2
Slotboom, J.3
Wiest, R.4
Reyes, M.5
-
37
-
-
42449117269
-
Extent of resection and survival in glioblastoma multiforme: Identification of and adjustment for bias
-
discussion 564-576
-
Stummer, W. et al. Extent of resection and survival in glioblastoma multiforme: identification of and adjustment for bias. Neurosurgery 62, 564-576 discussion 564-576, doi: 10.1227/01.neu.0000317304.31579.17 (2008).
-
(2008)
Neurosurgery
, vol.62
, pp. 564-576
-
-
Stummer, W.1
-
38
-
-
84947494671
-
Somatic mutations associated with MRI-derived volumetric features in glioblastoma
-
Gutman, D. et al. Somatic mutations associated with MRI-derived volumetric features in glioblastoma. Neuroradiology, 1-11 doi: 10.1007/s00234-015-1576-7 (2015).
-
(2015)
Neuroradiology
, pp. 1-11
-
-
Gutman, D.1
|