메뉴 건너뛰기




Volumn 48, Issue , 2015, Pages 403-422

Application of support vector machines for landuse classification using high-resolution rapideye images: A sensitivity analysis

Author keywords

Kernel; Landuse classification; RapidEye; Sensitivity; Support Vector Machines

Indexed keywords

CLASSIFICATION (OF INFORMATION); FUNCTIONS; IMAGE CLASSIFICATION; LEARNING SYSTEMS; MAXIMUM LIKELIHOOD; POLYNOMIALS; SENSITIVITY ANALYSIS;

EID: 84947218144     PISSN: None     EISSN: 22797254     Source Type: Journal    
DOI: 10.5721/EuJRS20154823     Document Type: Article
Times cited : (96)

References (42)
  • 1
    • 84929206896 scopus 로고    scopus 로고
    • Enhancing land use classification with fusing dual-polarized TerraSAR-X and multispectral RapidEye data
    • Abdikan S., Bilgin G., Sanli F.B., Uslu E., Ustuner M. (2015) - Enhancing land use classification with fusing dual-polarized TerraSAR-X and multispectral RapidEye data. Journal of Applied Remote Sensing, 9: 096054-096054. doi: http://dx.doi.org/10.1117/1.JRS.9.096054.
    • (2015) Journal of Applied Remote Sensing , vol.9 , pp. 096054
    • Abdikan, S.1    Bilgin, G.2    Sanli, F.B.3    Uslu, E.4    Ustuner, M.5
  • 2
    • 84901651305 scopus 로고    scopus 로고
    • Land-use/cover classification in a heterogeneous coastal landscape using RapidEye imagery: Evaluating the performance of random forest and support vector machines classifiers
    • Adam E., Mutanga O., Odindi J., Abdel-Rahman E.M. (2014) - Land-use/cover classification in a heterogeneous coastal landscape using RapidEye imagery: evaluating the performance of random forest and support vector machines classifiers. International Journal of Remote Sensing, 35: 3440-3458. doi: http://dx.doi.org/10.1080/01431161.2014.903435.
    • (2014) International Journal of Remote Sensing , vol.35 , pp. 3440-3458
    • Adam, E.1    Mutanga, O.2    Odindi, J.3    Abdel-Rahman, E.M.4
  • 3
    • 84903143000 scopus 로고    scopus 로고
    • Evaluating the impact of red-edge band from Rapideye image for classifying insect defoliation levels
    • Adelabu S., Mutanga O., Adam E. (2014) - Evaluating the impact of red-edge band from Rapideye image for classifying insect defoliation levels. ISPRS Journal of Photogrammetry and Remote Sensing, 95: 34-41. doi: http://dx.doi.org/10.1016/j.isprsjprs.2014.05.013.
    • (2014) ISPRS Journal of Photogrammetry and Remote Sensing , vol.95 , pp. 34-41
    • Adelabu, S.1    Mutanga, O.2    Adam, E.3
  • 6
    • 34249753618 scopus 로고
    • Support-Vector Networks
    • Cortes C., Vapnik V. (1995) - Support-Vector Networks. Machine Learning, 20: 273-297. doi: http://dx.doi.org/10.1007/BF00994018.
    • (1995) Machine Learning , vol.20 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 7
    • 0026278621 scopus 로고
    • A review of assessing the accuracy of classifications of remotely sensed data
    • Congalton R.G. (1991) - A review of assessing the accuracy of classifications of remotely sensed data. Remote Sensing of Environment, 37: 35-46. doi: http://dx.doi.org/10.1016/0034-4257(91)90048-B.
    • (1991) Remote Sensing of Environment , vol.37 , pp. 35-46
    • Congalton, R.G.1
  • 8
    • 84896005616 scopus 로고    scopus 로고
    • Derivation of temporal windows for accurate crop discrimination in heterogeneous croplands of Uzbekistan using multitemporal RapidEye images
    • Conrad C., Dech S., Dubovyk O., Fritsch S., Klein D., Löw F., Schorcht G., Zeidler J. (2014) - Derivation of temporal windows for accurate crop discrimination in heterogeneous croplands of Uzbekistan using multitemporal RapidEye images. Computers and Electronics in Agriculture, 103: 63-74. di: http://dx.doi.org/10.1016/j.compag.2014.02.003.
    • (2014) Computers and Electronics in Agriculture , vol.103 , pp. 63-74
    • Conrad, C.1    Dech, S.2    Dubovyk, O.3    Fritsch, S.4    Klein, D.5    Löw, F.6    Schorcht, G.7    Zeidler, J.8
  • 9
    • 37549004391 scopus 로고    scopus 로고
    • Multispectral landuse classification using neural networks and support vector machines: One or the other, or both?
    • Dixon B., Candade N. (2007) - Multispectral landuse classification using neural networks and support vector machines: one or the other, or both? International Journal of Remote Sensing, 29: 1185-1206. doi: http://dx.doi.org/10.1080/01431160701294661.
    • (2007) International Journal of Remote Sensing , vol.29 , pp. 1185-1206
    • Dixon, B.1    Candade, N.2
  • 10
    • 84947285409 scopus 로고    scopus 로고
    • ENVI (last accessed: 30.04.2014)
    • ENVI (2006) - Online Help, Applying Support Vector Machine Classification. Avalable online at: http://gridkr.com/d/ENVI_4_3/online_help/ApplyingSVMClassification.html (last accessed: 30.04.2014)
    • (2006) Online Help, Applying Support Vector Machine Classification
  • 12
    • 84904497228 scopus 로고    scopus 로고
    • Integration of Optical and Synthetic Aperture Radar Imager for Improving Crop Mapping in Northwestern Benin, West Africa
    • Forkuor G., Conrad C., Thiel M., Ullmann T., Zoungrana E. (2014) - Integration of Optical and Synthetic Aperture Radar Imager for Improving Crop Mapping in Northwestern Benin, West Africa. Remote Sensing, 6: 6472-6499. doi: http://dx.doi.org/10.3390/rs6076472.
    • (2014) Remote Sensing , vol.6 , pp. 6472-6499
    • Forkuor, G.1    Conrad, C.2    Thiel, M.3    Ullmann, T.4    Zoungrana, E.5
  • 13
    • 0028976638 scopus 로고
    • Status of remote sensing algorithms for estimation of land surface state parameters
    • Hall F.G., Townshend J.R., Engman E.T. (1995) - Status of remote sensing algorithms for estimation of land surface state parameters. Remote Sensing of Environment, 51: 138-156. doi: http://dx.doi.org/10.1016/0034-4257(94)00071-T.
    • (1995) Remote Sensing of Environment , vol.51 , pp. 138-156
    • Hall, F.G.1    Townshend, J.R.2    Engman, E.T.3
  • 14
    • 0037138473 scopus 로고    scopus 로고
    • An assessment of support vector machines for land cover classification
    • Huang C., Davis L.S., Townshend J.R.G. (2002) - An assessment of support vector machines for land cover classification. International Journal of Remote Sensing, 23: 725-749. doi: http://dx.doi.org/10.1080/01431160110040323.
    • (2002) International Journal of Remote Sensing , vol.23 , pp. 725-749
    • Huang, C.1    Davis, L.S.2    Townshend, J.R.G.3
  • 16
    • 67650759361 scopus 로고    scopus 로고
    • A kernel functions analysis for support vector machines for land cover classification
    • Kavzoglu T., Colkesen I. (2009) - A kernel functions analysis for support vector machines for land cover classification. International Journal of Applied Earth Observation and Geoinformation, 11: 352-359. doi: http://dx.doi.org/10.1016/j.jag.2009.06.002.
    • (2009) International Journal of Applied Earth Observation and Geoinformation , vol.11 , pp. 352-359
    • Kavzoglu, T.1    Colkesen, I.2
  • 17
    • 84947218830 scopus 로고    scopus 로고
    • (last accesseded: 30.04.2014)
    • Lorup E.J. (1996) - Crosstabulation. Avilable online at: http://uhaweb.hartford.edu/gatetutor/idrisi/mptools2.html (last accesseded: 30.04.2014).
    • (1996) Crosstabulation
    • Lorup, E.J.1
  • 18
    • 84884514639 scopus 로고    scopus 로고
    • Impact of feature selection on the accuracy and spatial uncertainty of per-field crop classification using Support Vector Machines
    • Löw F., Michel U., Dech S., Conrad C. (2013) - Impact of feature selection on the accuracy and spatial uncertainty of per-field crop classification using Support Vector Machines. ISPRS Journal of Photogrammetry and Remote Sensing, 85: 102-119. doi: http://dx.doi.org/10.1016/j.isprsjprs.2013.08.007.
    • (2013) ISPRS Journal of Photogrammetry and Remote Sensing , vol.85 , pp. 102-119
    • Löw, F.1    Michel, U.2    Dech, S.3    Conrad, C.4
  • 19
    • 84927598104 scopus 로고    scopus 로고
    • Analysis of uncertainty in multi-temporal object-based classification
    • Löw F., Knöfel P., Conrad C. (2015) - Analysis of uncertainty in multi-temporal object-based classification. ISPRS Journal of Photogrammetry and Remote Sensing, 105: 91-106. doi: http://dx.doi.org/10.1016/j.isprsjprs.2015.03.004.
    • (2015) ISPRS Journal of Photogrammetry and Remote Sensing , vol.105 , pp. 91-106
    • Löw, F.1    Knöfel, P.2    Conrad, C.3
  • 21
    • 40349110669 scopus 로고    scopus 로고
    • Crop classification by support vector machine with intelligently selected training data for an operational application
    • Mathur A., Foody G.M. (2008) - Crop classification by support vector machine with intelligently selected training data for an operational application. International Journal of Remote Sensing, 29: 2227-2240. doi: http://dx.doi.org/10.1080/01431160701395203.
    • (2008) International Journal of Remote Sensing , vol.29 , pp. 2227-2240
    • Mathur, A.1    Foody, G.M.2
  • 24
    • 75449091147 scopus 로고    scopus 로고
    • Land cover change assessment using decision trees, support vector machines and maximum likelihood classification algorithms
    • Otukei J.R., Blaschke T. (2010) - Land cover change assessment using decision trees, support vector machines and maximum likelihood classification algorithms. International Journal of Applied Earth Observation and Geoinformation, 12 (1): S27-S31. doi: http://dx.doi.org/10.1016/j.jag.2009.11.002.
    • (2010) International Journal of Applied Earth Observation and Geoinformation , vol.12 , Issue.1 , pp. S27-S31
    • Otukei, J.R.1    Blaschke, T.2
  • 25
    • 4444230479 scopus 로고    scopus 로고
    • Assessment of the effectiveness of support vector machines for hyperspectral data
    • Pal M., Mather P.M. (2004) - Assessment of the effectiveness of support vector machines for hyperspectral data. Future Generation Computer Systems, 20: 1215-1225. doi: http://dx.doi.org/10.1016/j.future.2003.11.011.
    • (2004) Future Generation Computer Systems , vol.20 , pp. 1215-1225
    • Pal, M.1    Mather, P.M.2
  • 26
    • 13644256120 scopus 로고    scopus 로고
    • Support vector machines for classification in remote sensing
    • Pal M., Mather P.M. (2005) - Support vector machines for classification in remote sensing. International Journal of Remote Sensing, 26: 1007-1011. doi: http://dx.doi.org/10.1080/01431160512331314083.
    • (2005) International Journal of Remote Sensing , vol.26 , pp. 1007-1011
    • Pal, M.1    Mather, P.M.2
  • 27
    • 85026296687 scopus 로고    scopus 로고
    • Advanced algorithms for land use and cover classification
    • CRC Press
    • Pal M. (2012) - Advanced algorithms for land use and cover classification. Advances in Mapping from Remote Sensor Imagery, CRC Press, pp. 69-90. doi: http://dx.doi.org/10.1201/b13770-4.
    • (2012) Advances in Mapping from Remote Sensor Imagery , pp. 69-90
    • Pal, M.1
  • 28
    • 84857916067 scopus 로고    scopus 로고
    • Support vector machines and object-based classification for obtaining land-use/cover cartography from Hyperion hyperspectral imagery
    • Petropoulos G.P., Kalaitzidis C., Prasad Vadrevu K. (2012) - Support vector machines and object-based classification for obtaining land-use/cover cartography from Hyperion hyperspectral imagery. Computers & Geosciences, 41: 99-107. doi: http://dx.doi.org/10.1016/j.cageo.2011.08.019.
    • (2012) Computers & Geosciences , vol.41 , pp. 99-107
    • Petropoulos, G.P.1    Kalaitzidis, C.2    Prasad Vadrevu, K.3
  • 29
    • 1942452360 scopus 로고    scopus 로고
    • Remote sensing technology for mapping and monitoring land-cover and land-use change
    • Rogan J., Chen D. (2004) - Remote sensing technology for mapping and monitoring land-cover and land-use change. Progress in Planning, 61: 301-325. doi: http://dx.doi.org/10.1016/S0305-9006(03)00066-7.
    • (2004) Progress in Planning , vol.61 , pp. 301-325
    • Rogan, J.1    Chen, D.2
  • 30
    • 84861743393 scopus 로고    scopus 로고
    • I2VM: Incremental import vector machines
    • Roscher R., Förstner W., Waske B. (2012) - I2VM: Incremental import vector machines. Image and Vision Computing, 30: 263-278. doi: http://dx.doi.org/10.1016/j.imavis.2012.04.004.
    • (2012) Image and Vision Computing , vol.30 , pp. 263-278
    • Roscher, R.1    Förstner, W.2    Waske, B.3
  • 31
    • 70350716740 scopus 로고    scopus 로고
    • Status and trends of small satellite missions for Earth observation
    • Sandau R. (2010) - Status and trends of small satellite missions for Earth observation. Acta Astronautica, 66: 1-12. doi: http://dx.doi.org/10.1016/j.actaastro.2009.06.008.
    • (2010) Acta Astronautica , vol.66 , pp. 1-12
    • Sandau, R.1
  • 32
    • 84858015958 scopus 로고    scopus 로고
    • Testing the red edge channel for improving land-use classifications based on high-resolution multi-spectral satellite data
    • Schuster C., Förster M., Kleinschmit B. (2012) - Testing the red edge channel for improving land-use classifications based on high-resolution multi-spectral satellite data. International Journal of Remote Sensing, 33: 5583-5599. doi: http://dx.doi.org/10.1080/01431161.2012.666812.
    • (2012) International Journal of Remote Sensing , vol.33 , pp. 5583-5599
    • Schuster, C.1    Förster, M.2    Kleinschmit, B.3
  • 34
    • 77958102087 scopus 로고    scopus 로고
    • Corn Monitoring and Crop Yield Using Optical and Microwave Remote Sensing
    • Ho P-G. P. (Ed.), InTech, Open Access Publisher, Chapter 19
    • Soria-Ruiz J., Fernandez-Ordonez Y., McNairn H. (2009) - Corn Monitoring and Crop Yield Using Optical and Microwave Remote Sensing. In Ho P-G. P. (Ed.), Geoscience and Remote Sensing, InTech, Open Access Publisher, Chapter 19. doi: http://dx.doi.org/10.5772/8311.
    • (2009) Geoscience and Remote Sensing
    • Soria-Ruiz, J.1    Fernandez-Ordonez, Y.2    McNairn, H.3
  • 35
    • 84878372022 scopus 로고    scopus 로고
    • Urban vegetation classification: Benefits of multitemporal RapidEye satellite data
    • Tigges J., Lakes T., Hostert P. (2013) - Urban vegetation classification: Benefits of multitemporal RapidEye satellite data. Remote Sensing of Environment, 136: 66-75. doi: http://dx.doi.org/10.1016/j.rse.2013.05.001.
    • (2013) Remote Sensing of Environment , vol.136 , pp. 66-75
    • Tigges, J.1    Lakes, T.2    Hostert, P.3
  • 40
    • 30144436285 scopus 로고    scopus 로고
    • The Map Comparison Kit
    • Visser H., de Nijs T. (2006) - The Map Comparison Kit. Environmental Modelling & Software, 21: 346-358. doi: http://dx.doi.org/10.1016/j.envsoft.2004.11.013.
    • (2006) Environmental Modelling & Software , vol.21 , pp. 346-358
    • Visser, H.1    de Nijs, T.2
  • 41
    • 38949149377 scopus 로고    scopus 로고
    • Multisource classification using support vector machines: An empirical comparison with decision tree and neural network classifiers
    • Watanachaturaporn P., Arora M.K., Varshney P.K. (2008) - Multisource classification using support vector machines: an empirical comparison with decision tree and neural network classifiers. Photogrammetric Engineering & Remote Sensing, 74 (2): 239-246. doi: http://dx.doi.org/10.14358/PERS.74.2.239.
    • (2008) Photogrammetric Engineering & Remote Sensing , vol.74 , Issue.2 , pp. 239-246
    • Watanachaturaporn, P.1    Arora, M.K.2    Varshney, P.K.3
  • 42
    • 79960366556 scopus 로고    scopus 로고
    • Parameterizing Support Vector Machines for Land Cover Classification
    • Yang X. (2011) - Parameterizing Support Vector Machines for Land Cover Classification. Photogrammetric Engineering & Remote Sensing, 77: 27-37. doi: http://dx.doi.org/10.14358/PERS.77.1.27.
    • (2011) Photogrammetric Engineering & Remote Sensing , vol.77 , pp. 27-37
    • Yang, X.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.