-
2
-
-
0032026483
-
Continuous probabilistic transform for voice conversion
-
March
-
Y. Stylianou, O. Cappé, and E. Moulines. Continuous probabilistic transform for voice conversion. IEEE Transactions on Speech and Audio Processing, 6(2):131-142, March 1998.
-
(1998)
IEEE Transactions on Speech and Audio Processing
, vol.6
, Issue.2
, pp. 131-142
-
-
Stylianou, Y.1
Cappé, O.2
Moulines, E.3
-
3
-
-
0031623661
-
Spectral voice conversion for text-tospeech synthesis
-
May
-
A. Kain and M. Macon. Spectral voice conversion for text-tospeech synthesis. In Proceedings of ICASSP, volume 1, pages 285-299, May 1998.
-
(1998)
Proceedings of ICASSP
, vol.1
, pp. 285-299
-
-
Kain, A.1
Macon, M.2
-
4
-
-
57749193836
-
Voice conversion based on maximum-likelihood estimation of spectral parameter trajectory
-
November
-
T. Toda, A. W. Black, and K. Tokuda. Voice conversion based on maximum-likelihood estimation of spectral parameter trajectory. IEEE Transactions on Audio, Speech, and Language Processing Journal, 15(8):2222-2235, November 2007.
-
(2007)
IEEE Transactions on Audio, Speech, and Language Processing Journal
, vol.15
, Issue.8
, pp. 2222-2235
-
-
Toda, T.1
Black, A.W.2
Tokuda, K.3
-
5
-
-
0029254176
-
Transformation of formants for voice conversion using artificial neural networks
-
M. Narendranath, H. A. Murthy, S. Rajendran, and B. Yegnanarayana. Transformation of formants for voice conversion using artificial neural networks. Speech communication, 16(2): 207-216, 1995.
-
(1995)
Speech Communication
, vol.16
, Issue.2
, pp. 207-216
-
-
Narendranath, M.1
Murthy, H.A.2
Rajendran, S.3
Yegnanarayana, B.4
-
7
-
-
77953707533
-
Spectral mapping using artificial neural networks for voice conversion
-
S. Desai, A. W. Black, B. Yegnanarayana, and K. Prahallad. Spectral mapping using artificial neural networks for voice conversion. Audio, Speech, and Language Processing, IEEE Transactions on, 18(5):954-964, 2010.
-
(2010)
Audio, Speech, and Language Processing, IEEE Transactions on
, vol.18
, Issue.5
, pp. 954-964
-
-
Desai, S.1
Black, A.W.2
Yegnanarayana, B.3
Prahallad, K.4
-
8
-
-
84906281619
-
Real-time voice conversion using artificial neural networks with rectified linear units
-
E. Azarov, M. Vashkevich, D. Likhachov, and A. Petrovsky. Real-time voice conversion using artificial neural networks with rectified linear units. In INTERSPEECH, pages 1032-1036, 2013.
-
(2013)
INTERSPEECH
, pp. 1032-1036
-
-
Azarov, E.1
Vashkevich, M.2
Likhachov, D.3
Petrovsky, A.4
-
9
-
-
84893244283
-
Voice conversion for arbitrary speakers using articulatory-movement to vocal-tract parameter mapping
-
IEEE
-
N. W. Ariwardhani, Y. Iribe, K. Katsurada, and T. Nitta. Voice conversion for arbitrary speakers using articulatory-movement to vocal-tract parameter mapping. In Machine Learning for Signal Processing (MLSP), 2013 IEEE InternationalWorkshop on, pages 1-6. IEEE, 2013.
-
(2013)
Machine Learning for Signal Processing (MLSP), 2013 IEEE InternationalWorkshop on
, pp. 1-6
-
-
Ariwardhani, N.W.1
Iribe, Y.2
Katsurada, K.3
Nitta, T.4
-
10
-
-
84905223323
-
Using bidirectional associative memories for joint spectral envelope modeling in voice conversion
-
L. J. Liu, L. H. Chen, Z. H. Ling, and L. R. Dai. Using bidirectional associative memories for joint spectral envelope modeling in voice conversion. In Acoustics, Speech and Signal Processing (ICASSP), 2014 IEEE International Conference on. IEEE, 2014.
-
(2014)
Acoustics, Speech and Signal Processing (ICASSP), 2014 IEEE International Conference On. IEEE
-
-
Liu, L.J.1
Chen, L.H.2
Ling, Z.H.3
Dai, L.R.4
-
11
-
-
84906225084
-
Joint spectral distribution modeling using restricted boltzmann machines for voice conversion
-
L. H. Chen, Z. H. Ling, Y. Song, and L. R. Dai. Joint spectral distribution modeling using restricted boltzmann machines for voice conversion. In INTERSPEECH, 2013.
-
(2013)
INTERSPEECH
-
-
Chen, L.H.1
Ling, Z.H.2
Song, Y.3
Dai, L.R.4
-
12
-
-
84889579519
-
Conditional restricted boltzmann machine for voice conversion
-
IEEE
-
Z. Wu, E. S. Chng, and H. Li. Conditional restricted boltzmann machine for voice conversion. In Signal and Information Processing (ChinaSIP), 2013 IEEE China Summit & International Conference on, pages 104-108. IEEE, 2013.
-
(2013)
Signal and Information Processing (ChinaSIP), 2013 IEEE China Summit & International Conference on
, pp. 104-108
-
-
Wu, Z.1
Chng, E.S.2
Li, H.3
-
13
-
-
84906280857
-
Voice conversion in high-order eigen space using deep belief nets
-
T. Nakashika, R. Takashima, T. Takiguchi, and Y. Ariki. Voice conversion in high-order eigen space using deep belief nets. In INTERSPEECH, pages 369-372, 2013.
-
(2013)
INTERSPEECH
, pp. 369-372
-
-
Nakashika, T.1
Takashima, R.2
Takiguchi, T.3
Ariki, Y.4
-
15
-
-
0024880831
-
Multilayer feedforward networks are universal approximators
-
K. Hornik, M. Stinchcombe, and H. White. Multilayer feedforward networks are universal approximators. Neural networks, 2(5):359-366, 1989.
-
(1989)
Neural Networks
, vol.2
, Issue.5
, pp. 359-366
-
-
Hornik, K.1
Stinchcombe, M.2
White, H.3
-
16
-
-
84865847955
-
Comparing ann and gmm in a voice conversion framework
-
R. Laskar, D. Chakrabarty, F. Talukdar, K. S. Rao, and K. Banerjee. Comparing ann and gmm in a voice conversion framework. Applied Soft Computing, 12(11):3332-3342, 2012.
-
(2012)
Applied Soft Computing
, vol.12
, Issue.11
, pp. 3332-3342
-
-
Laskar, R.1
Chakrabarty, D.2
Talukdar, F.3
Rao, K.S.4
Banerjee, K.5
-
17
-
-
85032751458
-
Deep neural networks for acoustic modeling in speech recognition: The shared views of four research groups
-
G. Hinton, L. Deng, D. Yu, G. E. Dahl, A. R. Mohamed, N. Jaitly, A. Senior, V. Vanhoucke, P. Nguyen, T. N. Sainath, et al. Deep neural networks for acoustic modeling in speech recognition: The shared views of four research groups. Signal Processing Magazine, IEEE, 29(6):82-97, 2012.
-
(2012)
Signal Processing Magazine, IEEE
, vol.29
, Issue.6
, pp. 82-97
-
-
Hinton, G.1
Deng, L.2
Yu, D.3
Dahl, G.E.4
Mohamed, A.R.5
Jaitly, N.6
Senior, A.7
Vanhoucke, V.8
Nguyen, P.9
Sainath, T.N.10
-
18
-
-
84890490547
-
Statistical parametric speech synthesis using deep neural networks
-
IEEE
-
H. Ze, A. Senior, and M. Schuster. Statistical parametric speech synthesis using deep neural networks. In Acoustics, Speech and Signal Processing (ICASSP), 2013 IEEE International Conference on, pages 7962-7966. IEEE, 2013.
-
(2013)
Acoustics, Speech and Signal Processing (ICASSP), 2013 IEEE International Conference on
, pp. 7962-7966
-
-
Ze, H.1
Senior, A.2
Schuster, M.3
-
19
-
-
84929157442
-
Combining a vector space representation of linguistic context with a deep neural network for text-to-speech synthesis
-
Barcelona, Spain, August
-
H. Lu, S. King, and O. Watts. Combining a vector space representation of linguistic context with a deep neural network for text-to-speech synthesis. In 8th ISCAWorkshop on Speech Synthesis, pages 281-285, Barcelona, Spain, August 2013.
-
(2013)
8th ISCAWorkshop on Speech Synthesis
, pp. 281-285
-
-
Lu, H.1
King, S.2
Watts, O.3
-
20
-
-
84901237776
-
Modeling spectral envelopes using restricted boltzmann machines and deep belief networks for statistical parametric speech synthesis
-
Z. H. Ling, L. Deng, and D. Yu. Modeling spectral envelopes using restricted boltzmann machines and deep belief networks for statistical parametric speech synthesis. Audio, Speech, and Language Processing, IEEE Transactions on, 21 (10):2129-2139, 2013.
-
(2013)
Audio, Speech, and Language Processing, IEEE Transactions on
, vol.21
, Issue.10
, pp. 2129-2139
-
-
Ling, Z.H.1
Deng, L.2
Yu., D.3
-
21
-
-
77949522811
-
Why does unsupervised pre-training help deep learning
-
D. Erhan, Y. Bengio, A. Courville, P. A. Manzagol, P. Vincent, and S. Bengio. Why does unsupervised pre-training help deep learning The Journal of Machine Learning Research, 11: 625-660, 2010.
-
(2010)
The Journal of Machine Learning Research
, vol.11
, pp. 625-660
-
-
Erhan, D.1
Bengio, Y.2
Courville, A.3
Manzagol, P.A.4
Vincent, P.5
Bengio, S.6
-
22
-
-
33746600649
-
Reducing the dimensionality of data with neural networks
-
G. E. Hinton and R. R. Salakhutdinov. Reducing the dimensionality of data with neural networks. Science, 313(5786): 504-507, 2006.
-
(2006)
Science
, vol.313
, Issue.5786
, pp. 504-507
-
-
Hinton, G.E.1
Salakhutdinov, R.R.2
-
23
-
-
79551480483
-
Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion
-
P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio, and P.-A. Manzagol. Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion. The Journal of Machine Learning Research, 11:3371-3408, 2010.
-
(2010)
The Journal of Machine Learning Research
, vol.11
, pp. 3371-3408
-
-
Vincent, P.1
Larochelle, H.2
Lajoie, I.3
Bengio, Y.4
Manzagol, P.-A.5
-
24
-
-
84928144072
-
-
Speech signal processing toolkit (sptk)
-
Speech signal processing toolkit (sptk). URL http://sp-tk. sourceforge. net/.
-
-
-
-
25
-
-
80053460450
-
Contractive auto-encoders: Explicit invariance during feature extraction
-
S. Rifai, P. Vincent, X. Muller, X. Glorot, and Y. Bengio. Contractive auto-encoders: Explicit invariance during feature extraction. In Proceedings of the 28th International Conference on Machine Learning (ICML-11), pages 833-840, 2011.
-
(2011)
Proceedings of the 28th International Conference on Machine Learning (ICML-11
, pp. 833-840
-
-
Rifai, S.1
Vincent, P.2
Muller, X.3
Glorot, X.4
Bengio, Y.5
-
26
-
-
34547496196
-
Towards a voice conversion system based on frame selection
-
IEEE
-
T. Dutoit, A. Holzapfel, M. Jottrand, A. Moinet, J. Perez, and Y. Stylianou. Towards a voice conversion system based on frame selection. In Acoustics, Speech and Signal Processing, 2007. ICASSP 2007. IEEE International Conference on, volume 4, pages IV-513. IEEE, 2007.
-
(2007)
Acoustics, Speech and Signal Processing, 2007. ICASSP 2007. IEEE International Conference on
, vol.4
, pp. IV-513
-
-
Dutoit, T.1
Holzapfel, A.2
Jottrand, M.3
Moinet, A.4
Perez, J.5
Stylianou, Y.6
-
27
-
-
84893401626
-
-
arXiv preprint arXiv:1308. 4214
-
I. J. Goodfellow, D. Warde-Farley, P. Lamblin, V. Dumoulin, M. Mirza, R. Pascanu, J. Bergstra, F. Bastien, and Y. Bengio. Pylearn2: A machine learning research library. arXiv preprint arXiv:1308. 4214, 2013.
-
(2013)
Pylearn2: A Machine Learning Research Library
-
-
Goodfellow, I.J.1
Warde-Farley, D.2
Lamblin, P.3
Dumoulin, V.4
Mirza, M.5
Pascanu, R.6
Bergstra, J.7
Bastien, F.8
Bengio, Y.9
-
28
-
-
79960392344
-
Amazon's mechanical turk-A new source of inexpensive, yet high-quality, data?
-
January
-
M. Buhrmester, T. Kwang, and S. D. Gosling. Amazon's mechanical turk-a new source of inexpensive, yet high-quality, data? Perspectives on Psychological Science, 6(1):3-5, January 2011.
-
(2011)
Perspectives on Psychological Science
, vol.6
, Issue.1
, pp. 3-5
-
-
Buhrmester, M.1
Kwang, T.2
Gosling, S.D.3
-
29
-
-
4444285698
-
-
PhD thesis, OGI School of Science & Engineering at Oregon Health & Science University
-
A. Kain. High Resolution Voice Transformation. PhD thesis, OGI School of Science & Engineering at Oregon Health & Science University, 2001.
-
(2001)
High Resolution Voice Transformation
-
-
Kain, A.1
-
30
-
-
0002322469
-
On a test of whether one of two random variables is stochastically larger than the other
-
H. B. Mann and D. R. Whitney. On a test of whether one of two random variables is stochastically larger than the other. The annals of mathematical statistics, pages 50-60, 1947.
-
(1947)
The Annals of Mathematical Statistics
, pp. 50-60
-
-
Mann, H.B.1
Whitney, D.R.2
|