메뉴 건너뛰기




Volumn 15, Issue 4, 2015, Pages 366-387

Longitudinal mixed-effects models for latent cognitive function

Author keywords

bent cable; Change point; cognition; growth curve model; item response theory (ITR); longitudinal data analysis

Indexed keywords


EID: 84946541123     PISSN: 1471082X     EISSN: 14770342     Source Type: Journal    
DOI: 10.1177/1471082X14555607     Document Type: Article
Times cited : (8)

References (38)
  • 1
    • 77958057320 scopus 로고    scopus 로고
    • Latent Markov model for longitudinal binary data: An application to the performance evaluation of nursing homes
    • F.BartolucciM.LupparelliG.E.Montanari (2009) Latent Markov model for longitudinal binary data: An application to the performance evaluation of nursing homes. Annals of Applied Statistics, 3, 491-879.
    • (2009) Annals of Applied Statistics , vol.3 , pp. 491-879
    • Bartolucci, F.1    Lupparelli, M.2    Montanari, G.E.3
  • 5
    • 0033571344 scopus 로고    scopus 로고
    • Item response models for longitudinal quality of life data in clinical trials
    • J.A.Douglas (1999) Item response models for longitudinal quality of life data in clinical trials. Statistics in Medicine, 18, 2917-31.
    • (1999) Statistics in Medicine , vol.18 , pp. 2917-2931
    • Douglas, J.A.1
  • 6
    • 0016823810 scopus 로고
    • Mini-mental state. A practical method for grading the cognitive state of patients for the clinician
    • M.F.FolsteinS.E.FolsteinP.R.McHugh (1975) Mini-mental state. A practical method for grading the cognitive state of patients for the clinician. Journal of Psychiatric Research, 12, 189-98.
    • (1975) Journal of Psychiatric Research , vol.12 , pp. 189-198
    • Folstein, M.F.1    Folstein, S.E.2    McHugh, P.R.3
  • 8
    • 0035534930 scopus 로고    scopus 로고
    • Bayesian estimation of a multilevel IRT model using Gibbs sampling
    • J.-P.FoxC.A.W.Glas (2001) Bayesian estimation of a multilevel IRT model using Gibbs sampling. Psychometrika, 66, 271-88.
    • (2001) Psychometrika , vol.66 , pp. 271-288
    • Fox, J.-P.1    Glas, C.A.W.2
  • 10
    • 0000539315 scopus 로고
    • Bayesian model choice: asymptotic and exact calculations
    • A.E.GelfandD.Dey (1994) Bayesian model choice: asymptotic and exact calculations. Journal Royal Statistical Society B, 56, 501-14.
    • (1994) Journal Royal Statistical Society B , vol.56 , pp. 501-514
    • Gelfand, A.E.1    Dey, D.2
  • 11
    • 0002799511 scopus 로고    scopus 로고
    • Model choice: A minimum posterior predictive loss approach
    • A.E.GelfandS.K.Ghosh (1998) Model choice: A minimum posterior predictive loss approach. Biometrika, 85, 1-11.
    • (1998) Biometrika , vol.85 , pp. 1-11
    • Gelfand, A.E.1    Ghosh, S.K.2
  • 13
    • 84972492387 scopus 로고
    • Inference from iterative simulation using multiple sequences
    • A.GelmanD.B.Rubin (1992) Inference from iterative simulation using multiple sequences. Statistical Science, 7, 457-511.
    • (1992) Statistical Science , vol.7 , pp. 457-511
    • Gelman, A.1    Rubin, D.B.2
  • 15
    • 84864586727 scopus 로고    scopus 로고
    • Meta-analysis of diagnostic studies based upon SROC-curves: a mixed model approach using the Lehmann family
    • H.HollingW.BöhningD.Böhning (2012) Meta-analysis of diagnostic studies based upon SROC-curves: a mixed model approach using the Lehmann family. Statistical Modelling, 12, 347-75.
    • (2012) Statistical Modelling , vol.12 , pp. 347-375
    • Holling, H.1    Böhning, W.2    Böhning, D.3
  • 16
    • 33645059153 scopus 로고    scopus 로고
    • Random changepoint model for joint modelling of cognitive decline and dementia
    • H.Jacqmin-GaddaD.CommengesJ.-F.Dartigues (2006) Random changepoint model for joint modelling of cognitive decline and dementia. Biometrics, 62, 254-60.
    • (2006) Biometrics , vol.62 , pp. 254-260
    • Jacqmin-Gadda, H.1    Commenges, D.2    Dartigues, J.-F.3
  • 18
    • 79960238870 scopus 로고    scopus 로고
    • A mixture model for the joint analysis of latent developmental trajectories and survival
    • E.R.H.KleinEntink RHJ.P.FoxA.Van den Hout (2011) A mixture model for the joint analysis of latent developmental trajectories and survival. Statistics in Medicine, 30, 2310-25.
    • (2011) Statistics in Medicine , vol.30 , pp. 2310-2325
    • Klein, E.R.H.1    Fox, J.P.2    Van den Hout, A.3
  • 20
    • 72349083803 scopus 로고    scopus 로고
    • Detection and localization of change-points in high-dimensional network traffic data
    • C.Lévy-LeducF.Roueff (2009) Detection and localization of change-points in high-dimensional network traffic data. Annals of Applied Statistics, 3, 637-62.
    • (2009) Annals of Applied Statistics , vol.3 , pp. 637-662
    • Lévy-Leduc, C.1    Roueff, F.2
  • 23
    • 84993748546 scopus 로고    scopus 로고
    • A review on linear mixed models for longitudinal data, possibly subject to dropout
    • G.MolenberghsG.Verbeke (2001) A review on linear mixed models for longitudinal data, possibly subject to dropout. Statistical Modelling, 1, 235-69.
    • (2001) Statistical Modelling , vol.1 , pp. 235-269
    • Molenberghs, G.1    Verbeke, G.2
  • 24
    • 84906054931 scopus 로고    scopus 로고
    • Segmented mixed models with random changepoints: a maximum likelihood approach with application to treatment for depression study
    • V.M.R.MuggeoD.C.AtkinsR.J.GallopD.SonaDimidjian (2014). Segmented mixed models with random changepoints: a maximum likelihood approach with application to treatment for depression study. Statistical Modelling, 14, 293-313
    • (2014) Statistical Modelling , vol.14 , pp. 293-313
    • Muggeo, V.M.R.1    Atkins, D.C.2    Gallop, R.J.3    Sona, D.4
  • 26
    • 45849088346 scopus 로고    scopus 로고
    • Penalized loss functions for Bayesian model comparison
    • M.Plummer (2008) Penalized loss functions for Bayesian model comparison. Biostatistics, 9, 523-39.
    • (2008) Biostatistics , vol.9 , pp. 523-539
    • Plummer, M.1
  • 27
    • 41149087694 scopus 로고    scopus 로고
    • CODA: convergence diagnosis and output analysis for MCMC
    • M.PlummerN.BestK.CowlesK.Vines (2006) CODA: convergence diagnosis and output analysis for MCMC. R News, 6, 7-11.
    • (2006) R News , vol.6 , pp. 7-11
    • Plummer, M.1    Best, N.2    Cowles, K.3    Vines, K.4
  • 29
    • 0017133178 scopus 로고
    • Inference and missing data
    • D.B.Rubin (1976) Inference and missing data. Biometrika, 63, 581-92.
    • (1976) Biometrika , vol.63 , pp. 581-592
    • Rubin, D.B.1
  • 30
    • 0002273972 scopus 로고    scopus 로고
    • The graded response model
    • New York: Springer,,. In WJ van der Linden and RK Hambleton (eds),, pp.
    • F.Samejima (1997) The graded response model. In WJ van der Linden and RK Hambleton (eds) Handbook of modern item response theory. New York: Springer, pp. 85-100.
    • (1997) Handbook of modern item response theory , pp. 85-100
    • Samejima, F.1
  • 38
    • 84876059127 scopus 로고    scopus 로고
    • Bayesian analysis of dynamic item response models in educational testing
    • X.WangJ.O.BergerB.S.Burdick (2013) Bayesian analysis of dynamic item response models in educational testing. Annals of Applied Statistics, 7, 126-53
    • (2013) Annals of Applied Statistics , vol.7 , pp. 126-153
    • Wang, X.1    Berger, J.O.2    Burdick, B.S.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.