메뉴 건너뛰기




Volumn 61, Issue , 2015, Pages 1-10

Real-time crash prediction for expressway weaving segments

Author keywords

Expressway weaving segments; Maximum length; Multilevel Bayesian logistic regression model; Real time crash analysis

Indexed keywords

ADVANCED TRAVELER INFORMATION SYSTEMS; HIGHWAY TRAFFIC CONTROL; INTELLIGENT SYSTEMS; LOGISTIC REGRESSION; REAL TIME SYSTEMS; RISK ASSESSMENT; SURFACE TREATMENT; TRAFFIC SIGNS;

EID: 84945552744     PISSN: 0968090X     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.trc.2015.10.008     Document Type: Article
Times cited : (136)

References (39)
  • 2
    • 33746600771 scopus 로고    scopus 로고
    • Calibrating a real-time traffic crash-prediction model using archived weather and its traffic data
    • Abdel-Aty M., Pemmanaboina R. Calibrating a real-time traffic crash-prediction model using archived weather and its traffic data. IEEE Trans. Intell. Transp. Syst. 2006, 7(2):167-174.
    • (2006) IEEE Trans. Intell. Transp. Syst. , vol.7 , Issue.2 , pp. 167-174
    • Abdel-Aty, M.1    Pemmanaboina, R.2
  • 7
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • Breiman L. Random forests. Mach. Learn. 2001, 45(1):5-32.
    • (2001) Mach. Learn. , vol.45 , Issue.1 , pp. 5-32
    • Breiman, L.1
  • 8
    • 79952536426 scopus 로고    scopus 로고
    • Identifying crash type propensity using real-time traffic data on freeways
    • Christoforou Z., Cohen S., Karlaftis M.G. Identifying crash type propensity using real-time traffic data on freeways. J. Safety Res. 2011, 42(1):43-50.
    • (2011) J. Safety Res. , vol.42 , Issue.1 , pp. 43-50
    • Christoforou, Z.1    Cohen, S.2    Karlaftis, M.G.3
  • 9
    • 33748491501 scopus 로고    scopus 로고
    • Multilevel (hierarchical) modeling: What it can and cannot do
    • Gelman A. Multilevel (hierarchical) modeling: What it can and cannot do. Technometrics 2006, 48:432-435.
    • (2006) Technometrics , vol.48 , pp. 432-435
    • Gelman, A.1
  • 13
    • 0003678532 scopus 로고    scopus 로고
    • Transportation Research Board. Washington, D.C.
    • Highway Capacity Manual, 2010. Transportation Research Board. Washington, D.C.
    • (2010) Highway Capacity Manual
  • 14
    • 84856100242 scopus 로고    scopus 로고
    • A bayesian network based framework for real-time crash prediction on the basic freeway segments of urban expressways
    • Hossain M., Muromachi Y. A bayesian network based framework for real-time crash prediction on the basic freeway segments of urban expressways. Accid. Anal. Prev. 2012, 45:373-381.
    • (2012) Accid. Anal. Prev. , vol.45 , pp. 373-381
    • Hossain, M.1    Muromachi, Y.2
  • 15
    • 84881261981 scopus 로고    scopus 로고
    • A real-time crash prediction model for the ramp vicinities of urban expressways
    • Hossain M., Muromachi Y. A real-time crash prediction model for the ramp vicinities of urban expressways. IATSS Res. 2013, 37(1):68-79.
    • (2013) IATSS Res. , vol.37 , Issue.1 , pp. 68-79
    • Hossain, M.1    Muromachi, Y.2
  • 16
    • 84876938657 scopus 로고    scopus 로고
    • Understanding crash mechanism on urban expressways using high-resolution traffic data
    • Hossain M., Muromachi Y. Understanding crash mechanism on urban expressways using high-resolution traffic data. Accid. Anal. Prev. 2013, 57:17-29.
    • (2013) Accid. Anal. Prev. , vol.57 , pp. 17-29
    • Hossain, M.1    Muromachi, Y.2
  • 17
    • 33750288910 scopus 로고    scopus 로고
    • Modeling crash outcome probabilities at rural intersections: application of hierarchical binomial logistic models
    • Kim D.-G., Lee Y., Washington S., Choi K. Modeling crash outcome probabilities at rural intersections: application of hierarchical binomial logistic models. Accid. Anal. Prev. 2007, 39(1):125-134.
    • (2007) Accid. Anal. Prev. , vol.39 , Issue.1 , pp. 125-134
    • Kim, D.-G.1    Lee, Y.2    Washington, S.3    Choi, K.4
  • 18
    • 0034433267 scopus 로고    scopus 로고
    • Maximum possible weaving volume for effective operations of ramp-weave areas: online estimation
    • Kwon E., Lau R., Aswegan J. Maximum possible weaving volume for effective operations of ramp-weave areas: online estimation. Transport. Res. Record: J. Transport. Res. Board 2000, 1727(1):132-141.
    • (2000) Transport. Res. Record: J. Transport. Res. Board , vol.1727 , Issue.1 , pp. 132-141
    • Kwon, E.1    Lau, R.2    Aswegan, J.3
  • 19
    • 35448938095 scopus 로고    scopus 로고
    • Temporal Variations in Traffic Flow and Ramp-related Crash Risk.
    • The Ninth International Conference.
    • Lee, C., Abdel-Aty, M., 2006. Temporal Variations in Traffic Flow and Ramp-related Crash Risk. Applications of Advanced Technology in Transportation. The Ninth International Conference.
    • (2006) Applications of Advanced Technology in Transportation.
    • Lee, C.1    Abdel-Aty, M.2
  • 22
    • 0037409358 scopus 로고    scopus 로고
    • A methodology for estimating capacity at ramp weaves based on gap acceptance and linear optimization
    • Lertworawanich P., Elefteriadou L. A methodology for estimating capacity at ramp weaves based on gap acceptance and linear optimization. Transport. Res. Part B: Methodol. 2003, 37(5):459-483.
    • (2003) Transport. Res. Part B: Methodol. , vol.37 , Issue.5 , pp. 459-483
    • Lertworawanich, P.1    Elefteriadou, L.2
  • 23
    • 77955644966 scopus 로고    scopus 로고
    • How lane arrangements on freeway mainlines and ramps affect safety of freeways with closely spaced entrance and exit ramps
    • Liu P., Chen H., Lu J.J., Cao B. How lane arrangements on freeway mainlines and ramps affect safety of freeways with closely spaced entrance and exit ramps. J. Transport. Eng. 2009, 136(7):614-622.
    • (2009) J. Transport. Eng. , vol.136 , Issue.7 , pp. 614-622
    • Liu, P.1    Chen, H.2    Lu, J.J.3    Cao, B.4
  • 25
    • 69049092794 scopus 로고    scopus 로고
    • Bias in odds ratios by logistic regression modelling and sample size
    • Nemes S., Jonasson J.M., Genell A., Steineck G. Bias in odds ratios by logistic regression modelling and sample size. BMC Med. Res. Methodol. 2009, 9(1):56.
    • (2009) BMC Med. Res. Methodol. , vol.9 , Issue.1 , pp. 56
    • Nemes, S.1    Jonasson, J.M.2    Genell, A.3    Steineck, G.4
  • 30
    • 84945538818 scopus 로고    scopus 로고
    • Winbugs Version 1.4 User Manual. MRC Biostatistics Unit, Cambridge.
    • Spiegelhalter, D., Thomas, A., Best, N., Lunn, D., 2003. Winbugs Version 1.4 User Manual. MRC Biostatistics Unit, Cambridge.
    • (2003)
    • Spiegelhalter, D.1    Thomas, A.2    Best, N.3    Lunn, D.4
  • 32
    • 84945541776 scopus 로고    scopus 로고
    • (accessed June 27, 2015).
    • University of Florida. About Signal Four Analytics, (accessed June 27, 2015). https://s4.geoplan.ufl.edu/.
    • About Signal Four Analytics
  • 35
    • 84876945975 scopus 로고    scopus 로고
    • Predicting crash likelihood and severity on freeways with real-time loop detector data
    • Xu C., Tarko A.P., Wang W., Liu P. Predicting crash likelihood and severity on freeways with real-time loop detector data. Accid. Anal. Prev. 2013, 57:30-39.
    • (2013) Accid. Anal. Prev. , vol.57 , pp. 30-39
    • Xu, C.1    Tarko, A.P.2    Wang, W.3    Liu, P.4
  • 36
    • 84890189616 scopus 로고    scopus 로고
    • Using the bayesian updating approach to improve the spatial and temporal transferability of real-time crash risk prediction models
    • Xu C., Wang W., Liu P., Guo R., Li Z. Using the bayesian updating approach to improve the spatial and temporal transferability of real-time crash risk prediction models. Transport. Res. Part C: Emer. Technol. 2014, 38:167-176.
    • (2014) Transport. Res. Part C: Emer. Technol. , vol.38 , pp. 167-176
    • Xu, C.1    Wang, W.2    Liu, P.3    Guo, R.4    Li, Z.5
  • 37
    • 84878444033 scopus 로고    scopus 로고
    • Multi-level Bayesian analyses for single- and multi-vehicle freeway crashes
    • Yu R., Abdel-Aty M. Multi-level Bayesian analyses for single- and multi-vehicle freeway crashes. Accid. Anal. Prev. 2013, 58:97-105.
    • (2013) Accid. Anal. Prev. , vol.58 , pp. 97-105
    • Yu, R.1    Abdel-Aty, M.2
  • 38
    • 84872121433 scopus 로고    scopus 로고
    • Utilizing support vector machine in real-time crash risk evaluation
    • Yu R., Abdel-Aty M. Utilizing support vector machine in real-time crash risk evaluation. Accid. Anal. Prev. 2013, 51:252-259.
    • (2013) Accid. Anal. Prev. , vol.51 , pp. 252-259
    • Yu, R.1    Abdel-Aty, M.2
  • 39
    • 76049098052 scopus 로고    scopus 로고
    • Impact of traffic oscillations on freeway crash occurrences
    • Zheng Z., Ahn S., Monsere C.M. Impact of traffic oscillations on freeway crash occurrences. Accid. Anal. Prev. 2010, 42(2):626-636.
    • (2010) Accid. Anal. Prev. , vol.42 , Issue.2 , pp. 626-636
    • Zheng, Z.1    Ahn, S.2    Monsere, C.M.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.