메뉴 건너뛰기




Volumn 6, Issue , 2015, Pages

Corrigendum: ChEC-seq kinetics discriminates transcription factor binding sites by DNA sequence and shape in vivo (Nature Communications (2015) 6 (8733) DOI: 10.1038/ncomms9733);ChEC-seq kinetics discriminates transcription factor binding sites by DNA sequence and shape in vivo

Author keywords

[No Author keywords available]

Indexed keywords

CALCIUM; DNA; ENZYME ACTIVITY; NUCLEIC ACID ANALYSIS; PROTEIN; TEMPORAL ANALYSIS;

EID: 84944937652     PISSN: None     EISSN: 20411723     Source Type: Journal    
DOI: 10.1038/ncomms15723     Document Type: Erratum
Times cited : (129)

References (68)
  • 1
    • 84926203507 scopus 로고    scopus 로고
    • High-resolution digital profiling of the epigenome
    • Zentner, G. E., Henikoff, S. High-resolution digital profiling of the epigenome. Nat. Rev. Genet. 15, 814-827 (2014).
    • (2014) Nat. Rev. Genet. , vol.15 , pp. 814-827
    • Zentner, G.E.1    Henikoff, S.2
  • 2
    • 0032848160 scopus 로고    scopus 로고
    • Formaldehyde cross-linking for studying nucleosomal dynamics
    • Jackson, V. Formaldehyde cross-linking for studying nucleosomal dynamics. Methods 17, 125-139 (1999).
    • (1999) Methods , vol.17 , pp. 125-139
    • Jackson, V.1
  • 3
    • 84885853740 scopus 로고    scopus 로고
    • Measuring chromatin interaction dynamics on the second time scale at single-copy genes
    • Poorey, K. et al. Measuring chromatin interaction dynamics on the second time scale at single-copy genes. Science 342, 369-372 (2013).
    • (2013) Science , vol.342 , pp. 369-372
    • Poorey, K.1
  • 4
    • 84896338378 scopus 로고    scopus 로고
    • Single-molecule dynamics of enhanceosome assembly in embryonic stem cells
    • Chen, J. et al. Single-molecule dynamics of enhanceosome assembly in embryonic stem cells. Cell 156, 1274-1285 (2014).
    • (2014) Cell , vol.156 , pp. 1274-1285
    • Chen, J.1
  • 5
    • 64549091902 scopus 로고    scopus 로고
    • Where does mediator bind in vivo?
    • Fan, X., Struhl, K. Where does mediator bind in vivo? PLoS ONE 4, e5029 (2009).
    • (2009) PLoS ONE , vol.4 , pp. e5029
    • Fan, X.1    Struhl, K.2
  • 6
    • 84887478181 scopus 로고    scopus 로고
    • Highly expressed loci are vulnerable to misleading ChIP localization of multiple unrelated proteins
    • Teytelman, L., Thurtle, D. M., Rine, J., van Oudenaarden, A. Highly expressed loci are vulnerable to misleading ChIP localization of multiple unrelated proteins. Proc. Natl Acad. Sci. USA 110, 18602-18607 (2013).
    • (2013) Proc. Natl Acad. Sci. USA , vol.110 , pp. 18602-18607
    • Teytelman, L.1    Thurtle, D.M.2    Rine, J.3    Van Oudenaarden, A.4
  • 7
    • 84891945420 scopus 로고    scopus 로고
    • Widespread misinterpretable ChIP-seq bias in yeast
    • Park, D., Lee, Y., Bhupindersingh, G., Iyer, V. R. Widespread misinterpretable ChIP-seq bias in yeast. PLoS ONE 8, e83506 (2013).
    • (2013) PLoS ONE , vol.8 , pp. e83506
    • Park, D.1    Lee, Y.2    Bhupindersingh, G.3    Iyer, V.R.4
  • 8
    • 83255164884 scopus 로고    scopus 로고
    • Comprehensive genome-wide protein-DNA interactions detected at single-nucleotide resolution
    • Rhee,H. S., Pugh, B. F. Comprehensive genome-wide protein-DNA interactions detected at single-nucleotide resolution. Cell 147, 1408-1419 (2011).
    • (2011) Cell , vol.147 , pp. 1408-1419
    • Rheeh, S.1    Pugh, B.F.2
  • 9
    • 84899620204 scopus 로고    scopus 로고
    • The nucleosomal barrier to promoter escape by RNA polymerase II is overcome by the chromatin remodeler Chd1
    • Skene, P. J., Hernandez, A. E., Groudine, M., Henikoff, S. The nucleosomal barrier to promoter escape by RNA polymerase II is overcome by the chromatin remodeler Chd1. Elife 3, e02042 (2014).
    • (2014) Elife , vol.3 , pp. e02042
    • Skene, P.J.1    Hernandez, A.E.2    Groudine, M.3    Henikoff, S.4
  • 10
    • 84926619310 scopus 로고    scopus 로고
    • ChIP-nexus enables improved detection of in vivo transcription factor binding footprints
    • He, Q., Johnston, J., Zeitlinger, J. ChIP-nexus enables improved detection of in vivo transcription factor binding footprints. Nat. Biotechnol. 33, 395-401 (2015).
    • (2015) Nat. Biotechnol. , vol.33 , pp. 395-401
    • He, Q.1    Johnston, J.2    Zeitlinger, J.3
  • 11
    • 69249087790 scopus 로고    scopus 로고
    • Impact of chromatin structures on DNA processing for genomic analyses
    • Teytelman, L. et al. Impact of chromatin structures on DNA processing for genomic analyses. PLoS ONE 4, e6700 (2009).
    • (2009) PLoS ONE , vol.4 , pp. e6700
    • Teytelman, L.1
  • 12
    • 84895072244 scopus 로고    scopus 로고
    • Highresolution mapping of transcription factor binding sites on native chromatin
    • Kasinathan, S., Orsi, G. A., Zentner, G. E., Ahmad, K., Henikoff, S. Highresolution mapping of transcription factor binding sites on native chromatin. Nat. Methods 11, 203-209 (2014).
    • (2014) Nat. Methods , vol.11 , pp. 203-209
    • Kasinathan, S.1    Orsi, G.A.2    Zentner, G.E.3    Ahmad, K.4    Henikoff, S.5
  • 13
    • 84874764239 scopus 로고    scopus 로고
    • ISWI and CHD chromatin remodelers bind promoters but act in gene bodies
    • Zentner, G. E., Tsukiyama, T., Henikoff, S. ISWI and CHD chromatin remodelers bind promoters but act in gene bodies. PLoS Genet. 9, e1003317 (2013).
    • (2013) PLoS Genet. , vol.9 , pp. e1003317
    • Zentner, G.E.1    Tsukiyama, T.2    Henikoff, S.3
  • 14
    • 0034007256 scopus 로고    scopus 로고
    • Identification of in vivo DNA targets of chromatin proteins using tethered Dam methyltransferase
    • van Steensel, B., Henikoff, S. Identification of in vivo DNA targets of chromatin proteins using tethered Dam methyltransferase. Nat. Biotechnol. 18, 424-428 (2000).
    • (2000) Nat. Biotechnol. , vol.18 , pp. 424-428
    • Van Steensel, B.1    Henikoff, S.2
  • 15
    • 34250791291 scopus 로고    scopus 로고
    • Detection of in vivo protein- DNA interactions using DamID in mammalian cells
    • Vogel, M. J., Peric-Hupkes, D., van Steensel, B. Detection of in vivo protein- DNA interactions using DamID in mammalian cells. Nat. Protoc. 2, 1467-1478 (2007).
    • (2007) Nat. Protoc. , vol.2 , pp. 1467-1478
    • Vogel, M.J.1    Peric-Hupkes, D.2    Van Steensel, B.3
  • 16
    • 77957776228 scopus 로고    scopus 로고
    • Systematic protein location mapping reveals five principal chromatin types in Drosophila cells
    • Filion, G. J. et al. Systematic protein location mapping reveals five principal chromatin types in Drosophila cells. Cell 143, 212-224 (2010).
    • (2010) Cell , vol.143 , pp. 212-224
    • Filion, G.J.1
  • 17
    • 84944180412 scopus 로고    scopus 로고
    • DamID a new tool for studying plant chromatin profiling in vivo, and its use to identify putative LHP1 target loci
    • Germann, S., Juul-Jensen, T., Letarnec, B., Gaudin, V. DamID, a new tool for studying plant chromatin profiling in vivo, and its use to identify putative LHP1 target loci. Plant J. 48, 153-163 (2006).
    • (2006) Plant J. , vol.48 , pp. 153-163
    • Germann, S.1    Juul-Jensen, T.2    Letarnec, B.3    Gaudin, V.4
  • 18
    • 84860201732 scopus 로고    scopus 로고
    • The inner nuclear membrane proteins Man1 and Ima1 link to two different types of chromatin at the nuclear periphery in S. Pombe
    • Steglich, B., Filion, G., van Steensel, B., Ekwall, K. The inner nuclear membrane proteins Man1 and Ima1 link to two different types of chromatin at the nuclear periphery in S. pombe. Nucleus 3, 77-87 (2012).
    • (2012) Nucleus , vol.3 , pp. 77-87
    • Steglich, B.1    Filion, G.2    Van Steensel, B.3    Ekwall, K.4
  • 19
    • 77955643991 scopus 로고    scopus 로고
    • DamID in C elegans reveals longevity-associated targets of DAF-16/FoxO
    • Schuster, E. et al. DamID in C. elegans reveals longevity-associated targets of DAF-16/FoxO. Mol. Syst. Biol. 6, 399 (2010).
    • (2010) Mol. Syst. Biol. , vol.6 , pp. 399
    • Schuster, E.1
  • 20
    • 84863247956 scopus 로고    scopus 로고
    • Calling Cards'' for DNA-Binding proteins in mammalian cells
    • Wang, H., Mayhew, D., Chen, X., Johnston, M., Mitra, R. D. ''Calling Cards'' for DNA-Binding Proteins in Mammalian Cells. Genetics 190, 941-949 (2012).
    • (2012) Genetics , vol.190 , pp. 941-949
    • Wang, H.1    Mayhew, D.2    Chen, X.3    Johnston, M.4    Mitra, R.D.5
  • 21
    • 4944227536 scopus 로고    scopus 로고
    • ChIC and ChEC: Genomic mapping of chromatin proteins
    • Schmid, M., Durussel, T., Laemmli, U. K. ChIC and ChEC: Genomic Mapping of Chromatin Proteins. Mol. Cell 16, 147-157 (2004).
    • (2004) Mol. Cell , vol.16 , pp. 147-157
    • Schmid, M.1    Durussel, T.2    Laemmli, U.K.3
  • 22
    • 43249097755 scopus 로고    scopus 로고
    • Actively transcribed rRNA genes in S. Cerevisiae are organized in a specialized chromatin associated with the high-mobility group protein Hmo1 and are largely devoid of histone molecules
    • Merz, K. et al. Actively transcribed rRNA genes in S. cerevisiae are organized in a specialized chromatin associated with the high-mobility group protein Hmo1 and are largely devoid of histone molecules. Genes Dev. 22, 1190-1204 (2008).
    • (2008) Genes Dev. , vol.22 , pp. 1190-1204
    • Merz, K.1
  • 23
    • 31544471808 scopus 로고    scopus 로고
    • Nup-PI: The Nucleopore-Promoter Interaction of Genes in Yeast
    • Schmid, M. et al. Nup-PI: The Nucleopore-Promoter Interaction of Genes in Yeast. Mol. Cell 21, 379-391 (2006).
    • (2006) Mol. Cell , vol.21 , pp. 379-391
    • Schmid, M.1
  • 24
    • 0028174938 scopus 로고
    • Regulation of cellular Ca2 by yeast vacuoles
    • Dunn, T., Gable, K., Beeler, T. Regulation of cellular Ca2 by yeast vacuoles. J. Biol. Chem. 269, 7273-7278 (1994).
    • (1994) J. Biol. Chem. , vol.269 , pp. 7273-7278
    • Dunn, T.1    Gable, K.2    Beeler, T.3
  • 25
    • 0033837889 scopus 로고    scopus 로고
    • Rapid androgen actions on calcium signaling in rat sertoli cells and two human prostatic cell lines: Similar biphasic responses between 1 picomolar and 100 nanomolar concentrations
    • Lyng, F. M., Jones, G. R., Rommerts, F. F. G. Rapid androgen actions on calcium signaling in rat sertoli cells and two human prostatic cell lines: similar biphasic responses between 1 picomolar and 100 nanomolar concentrations. Biol. Reprod. 63, 736-747 (2000).
    • (2000) Biol. Reprod. , vol.63 , pp. 736-747
    • Lyng, F.M.1    Jones, G.R.2    Rommerts, F.F.G.3
  • 26
    • 0347137958 scopus 로고    scopus 로고
    • Melanocortin receptor-mediated mobilization of intracellular free calcium in HEK293 cells
    • Mountjoy, K. G., Kong, P. L., Taylor, J. A., Willard, D. H., Wilkison, W. O. Melanocortin receptor-mediated mobilization of intracellular free calcium in HEK293 cells. Physiol. Genomics 5, 11-19 (2001).
    • (2001) Physiol. Genomics , vol.5 , pp. 11-19
    • Mountjoy, K.G.1    Kong, P.L.2    Taylor, J.A.3    Willard, D.H.4    Wilkison, W.O.5
  • 27
    • 84858054760 scopus 로고    scopus 로고
    • Imaging calcium in neurons
    • Grienberger, C., Konnerth, A. Imaging calcium in neurons. Neuron 73, 862-885 (2012).
    • (2012) Neuron , vol.73 , pp. 862-885
    • Grienberger, C.1    Konnerth, A.2
  • 28
    • 84880510545 scopus 로고    scopus 로고
    • Snapin accelerates exocytosis at low intracellular calcium concentration in mouse chromaffin cells
    • Schmidt, T., Schirra, C., Matti, U., Stevens, D. R., Rettig, J. Snapin accelerates exocytosis at low intracellular calcium concentration in mouse chromaffin cells. Cell Calcium 54, 105-110 (2013).
    • (2013) Cell Calcium , vol.54 , pp. 105-110
    • Schmidt, T.1    Schirra, C.2    Matti, U.3    Stevens, D.R.4    Rettig, J.5
  • 29
    • 84875090185 scopus 로고    scopus 로고
    • Insulin-like growth factor binding proteins increase intracellular calcium levels in two different cell lines
    • Seurin, D., Lombet, A., Babajko, S., Godeau, F., Ricort, J.-M. Insulin-like growth factor binding proteins increase intracellular calcium levels in two different cell lines. PLoS ONE 8, e59323 (2013).
    • (2013) PLoS ONE , vol.8 , pp. e59323
    • Seurin, D.1    Lombet, A.2    Babajko, S.3    Godeau, F.4    Ricort, J.-M.5
  • 30
    • 0026557754 scopus 로고
    • Role of multifunctional autonomously replicating sequence binding factor 1 in the initiation of DNA replication and transcriptional control in Saccharomyces cerevisiae
    • Rhode, P. R., Elsasser, S., Campbell, J. L. Role of multifunctional autonomously replicating sequence binding factor 1 in the initiation of DNA replication and transcriptional control in Saccharomyces cerevisiae. Mol. Cell. Biol. 12, 1064-1077 (1992).
    • (1992) Mol. Cell. Biol. , vol.12 , pp. 1064-1077
    • Rhode, P.R.1    Elsasser, S.2    Campbell, J.L.3
  • 31
    • 0033398560 scopus 로고    scopus 로고
    • Yeast autonomously replicating sequence binding factor is involved in nucleotide excision repair
    • Reed, S. H., Akiyama, M., Stillman, B., Friedberg, E. C. Yeast autonomously replicating sequence binding factor is involved in nucleotide excision repair. Genes Dev. 13, 3052-3058 (1999).
    • (1999) Genes Dev. , vol.13 , pp. 3052-3058
    • Reed, S.H.1    Akiyama, M.2    Stillman, B.3    Friedberg, E.C.4
  • 32
    • 0026320245 scopus 로고
    • Association of RAP1 binding sites with stringent control of ribosomal protein gene transcription in Saccharomyces cerevisiae
    • Moehle, C. M., Hinnebusch, A. G. Association of RAP1 binding sites with stringent control of ribosomal protein gene transcription in Saccharomyces cerevisiae. Mol. Cell. Biol. 11, 2723-2735 (1991).
    • (1991) Mol. Cell. Biol. , vol.11 , pp. 2723-2735
    • Moehle, C.M.1    Hinnebusch, A.G.2
  • 33
    • 0025252456 scopus 로고
    • Involvement of the silencer and UAS binding protein RAP1 in regulation of telomere length
    • Lustig, A., Kurtz, S., Shore, D. Involvement of the silencer and UAS binding protein RAP1 in regulation of telomere length. Science 250, 549-553 (1990).
    • (1990) Science , vol.250 , pp. 549-553
    • Lustig, A.1    Kurtz, S.2    Shore, D.3
  • 34
    • 0027523912 scopus 로고
    • The REB1 site is an essential component of a terminator for RNA polymerase i in Saccharomyces cerevisiae
    • Lang, W. H., Reeder, R. H. The REB1 site is an essential component of a terminator for RNA polymerase I in Saccharomyces cerevisiae. Mol. Cell. Biol. 13, 649-658 (1993).
    • (1993) Mol. Cell. Biol. , vol.13 , pp. 649-658
    • Lang, W.H.1    Reeder, R.H.2
  • 35
    • 0027396508 scopus 로고
    • Concerted action of the transcriptional activators REB1RAP1, and GCR1 in the high-level expression of the glycolytic gene TPI
    • Scott, E. W., Baker, H. V. Concerted action of the transcriptional activators REB1, RAP1, and GCR1 in the high-level expression of the glycolytic gene TPI. Mol. Cell. Biol. 13, 543-550 (1993).
    • (1993) Mol. Cell. Biol. , vol.13 , pp. 543-550
    • Scott, E.W.1    Baker, H.V.2
  • 36
    • 0028362731 scopus 로고
    • A Reb1p-binding site is required for efficient activation of the yeast RAP1 gene, but multiple binding sites for Rap1p are not essential
    • Graham, I. R., Chambers, A. A Reb1p-binding site is required for efficient activation of the yeast RAP1 gene, but multiple binding sites for Rap1p are not essential. Mol. Microbiol. 12, 931-940 (1994).
    • (1994) Mol. Microbiol. , vol.12 , pp. 931-940
    • Graham, I.R.1    Chambers, A.2
  • 37
    • 77950665737 scopus 로고    scopus 로고
    • Alternative chromatin structures of the 35s rRNA genes in Saccharomyces cerevisiae provide a molecular basis for the selective recruitment of RNA polymerases i and II
    • Goetze, H. et al. Alternative chromatin structures of the 35s rRNA genes in Saccharomyces cerevisiae provide a molecular basis for the selective recruitment of RNA polymerases I and II. Mol. Cell. Biol. 30, 2028-2045 (2010).
    • (2010) Mol. Cell. Biol. , vol.30 , pp. 2028-2045
    • Goetze, H.1
  • 38
    • 84865239020 scopus 로고    scopus 로고
    • The Reb1 homologue Ydr026c/Nsi1 is required for efficient RNA polymerase i termination in yeast
    • Reiter, A. et al. The Reb1 homologue Ydr026c/Nsi1 is required for efficient RNA polymerase I termination in yeast. EMBO J. 31, 3480-3493 (2012).
    • (2012) EMBO J. , vol.31 , pp. 3480-3493
    • Reiter, A.1
  • 39
    • 65249164132 scopus 로고    scopus 로고
    • Mechanisms that specify promoter nucleosome location and identity
    • Hartley, P. D., Madhani, H. D. Mechanisms that specify promoter nucleosome location and identity. Cell 137, 445-458 (2009).
    • (2009) Cell , vol.137 , pp. 445-458
    • Hartley, P.D.1    Madhani, H.D.2
  • 40
    • 79953729072 scopus 로고    scopus 로고
    • Extensive role of the general regulatory factors, Abf1 and Rap1, in determining genome-wide chromatin structure in budding yeast
    • Ganapathi, M. et al. Extensive role of the general regulatory factors, Abf1 and Rap1, in determining genome-wide chromatin structure in budding yeast. Nucleic Acids Res. 39, 2032-2044 (2011).
    • (2011) Nucleic Acids Res. , vol.39 , pp. 2032-2044
    • Ganapathi, M.1
  • 41
    • 84878473105 scopus 로고    scopus 로고
    • A compendium of nucleosome and transcript profiles reveals determinants of chromatin architecture and transcription
    • van Bakel, H. et al. A compendium of nucleosome and transcript profiles reveals determinants of chromatin architecture and transcription. PLoS Genet. 9, e1003479 (2013).
    • (2013) PLoS Genet. , vol.9 , pp. e1003479
    • Van Bakel, H.1
  • 42
    • 80054728495 scopus 로고    scopus 로고
    • Animal transcription networks as highly connected quantitative continua
    • Biggin, M. D. Animal Transcription Networks as Highly Connected, Quantitative Continua. Dev. Cell 21, 611-626 (2011).
    • (2011) Dev. Cell , vol.21 , pp. 611-626
    • Biggin, M.D.1
  • 43
    • 84871844925 scopus 로고    scopus 로고
    • DNA regions bound at low occupancy by transcription factors do not drive patterned reporter gene expression in Drosophila
    • Fisher, W. W. et al. DNA regions bound at low occupancy by transcription factors do not drive patterned reporter gene expression in Drosophila. Proc. Natl Acad. Sci. USA 109, 21330-21335 (2012).
    • (2012) Proc. Natl Acad. Sci. USA , vol.109 , pp. 21330-21335
    • Fisher, W.W.1
  • 44
    • 0142215475 scopus 로고    scopus 로고
    • Global analysis of protein expression in yeast
    • Ghaemmaghami, S. et al. Global analysis of protein expression in yeast. Nature 425, 737-741 (2003).
    • (2003) Nature , vol.425 , pp. 737-741
    • Ghaemmaghami, S.1
  • 45
    • 33645769260 scopus 로고    scopus 로고
    • An improved map of conserved regulatory sites for Saccharomyces cerevisiae
    • MacIsaac, K. et al. An improved map of conserved regulatory sites for Saccharomyces cerevisiae. BMC Bioinformatics 7, 113 (2006).
    • (2006) BMC Bioinformatics , vol.7 , pp. 113
    • MacIsaac, K.1
  • 47
    • 84860156192 scopus 로고    scopus 로고
    • The orientation of the C-terminal domain of the Saccharomyces cerevisiae Rap1 protein is determined by its binding to DNA
    • Matot, B. et al. The orientation of the C-terminal domain of the Saccharomyces cerevisiae Rap1 protein is determined by its binding to DNA. Nucleic Acids Res. 40, 3197-3207 (2012).
    • (2012) Nucleic Acids Res. , vol.40 , pp. 3197-3207
    • Matot, B.1
  • 48
    • 51749125782 scopus 로고    scopus 로고
    • Structural and functional studies of the Rap1 C-Terminus reveal novel separation-of-function mutants
    • Feeser, E. A., Wolberger, C. Structural and functional studies of the Rap1 C-Terminus reveal novel separation-of-function mutants. J. Mol. Biol. 380, 520-531 (2008).
    • (2008) J. Mol. Biol. , vol.380 , pp. 520-531
    • Feeser, E.A.1    Wolberger, C.2
  • 49
    • 84930409407 scopus 로고    scopus 로고
    • Deconvolving the recognition of DNA shape from sequence
    • Abe, N. et al. Deconvolving the recognition of DNA shape from sequence. Cell 161, 307-318 (2015).
    • (2015) Cell , vol.161 , pp. 307-318
    • Abe, N.1
  • 50
    • 84928033171 scopus 로고    scopus 로고
    • Quantitative modeling of transcription factor binding specificities using DNA shape
    • Zhou, T. et al. Quantitative modeling of transcription factor binding specificities using DNA shape. Proc. Natl Acad. Sci. USA 112, 4654-4659 (2015).
    • (2015) Proc. Natl Acad. Sci. USA , vol.112 , pp. 4654-4659
    • Zhou, T.1
  • 51
    • 10044223573 scopus 로고    scopus 로고
    • Kinetics of protein-DNA interaction: Facilitated target location in sequence-dependent potential
    • Slutsky, M., Mirny, L. A. Kinetics of protein-DNA interaction: facilitated target location in sequence-dependent potential. Biophys. J. 87, 4021-4035 (2004).
    • (2004) Biophys. J. , vol.87 , pp. 4021-4035
    • Slutsky, M.1    Mirny, L.A.2
  • 52
    • 84865708757 scopus 로고    scopus 로고
    • An expansive human regulatory lexicon encoded in transcription factor footprints
    • Neph, S. et al. An expansive human regulatory lexicon encoded in transcription factor footprints. Nature 489, 83-90 (2012).
    • (2012) Nature , vol.489 , pp. 83-90
    • Neph, S.1
  • 53
    • 84922589001 scopus 로고    scopus 로고
    • DNase footprint signatures are dictated by factor dynamics and DNA sequence
    • Sung, M.-H., Guertin, Michael, J., Baek, S., Hager, G. DNase footprint signatures are dictated by factor dynamics and DNA sequence. Mol. Cell 56, 275-285 (2014).
    • (2014) Mol. Cell , vol.56 , pp. 275-285
    • Sung, M.-H.1    Guertin Michael, J.2    Baek, S.3    Hager, G.4
  • 54
    • 84900314611 scopus 로고    scopus 로고
    • CRISPR-Cas systems for editing, regulating and targeting genomes
    • Sander, J. D., Joung, J. K. CRISPR-Cas systems for editing, regulating and targeting genomes. Nat. Biotechnol. 32, 347-355 (2014).
    • (2014) Nat. Biotechnol. , vol.32 , pp. 347-355
    • Sander, J.D.1    Joung, J.K.2
  • 55
    • 0031820288 scopus 로고    scopus 로고
    • Additional modules for versatile and economical PCR-based gene deletion and modification in Saccharomyces cerevisiae
    • Longtine, M. S. et al. Additional modules for versatile and economical PCR-based gene deletion and modification in Saccharomyces cerevisiae. Yeast 14, 953-961 (1998).
    • (1998) Yeast , vol.14 , pp. 953-961
    • Longtine, M.S.1
  • 56
    • 67349270900 scopus 로고    scopus 로고
    • Enzymatic assembly of DNA molecules up to several hundred kilobases
    • Gibson, D. G. et al. Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat. Methods 6, 343-345 (2009).
    • (2009) Nat. Methods , vol.6 , pp. 343-345
    • Gibson, D.G.1
  • 57
    • 0034733591 scopus 로고    scopus 로고
    • Rapid and reliable protein extraction from yeast
    • Kushnirov, V. V. Rapid and reliable protein extraction from yeast. Yeast 16, 857-860 (2000).
    • (2000) Yeast , vol.16 , pp. 857-860
    • Kushnirov, V.V.1
  • 58
    • 84893129292 scopus 로고    scopus 로고
    • Mot1 redistributes TBP from TATA-containing to TATA-less promoters
    • Zentner, G. E., Henikoff, S. Mot1 redistributes TBP from TATA-containing to TATA-less promoters. Mol. Cell. Biol. 33, 4996-5004 (2013).
    • (2013) Mol. Cell. Biol. , vol.33 , pp. 4996-5004
    • Zentner, G.E.1    Henikoff, S.2
  • 59
    • 84856008074 scopus 로고    scopus 로고
    • Tripartite organization of centromeric chromatin in budding yeast
    • Krassovsky, K., Henikoff, J. G., Henikoff, S. Tripartite organization of centromeric chromatin in budding yeast. Proc. Natl Acad. Sci. USA 109, 243-248 (2012).
    • (2012) Proc. Natl Acad. Sci. USA , vol.109 , pp. 243-248
    • Krassovsky, K.1    Henikoff, J.G.2    Henikoff, S.3
  • 60
    • 84864147180 scopus 로고    scopus 로고
    • BEDOPS: High-performance genomic feature operations
    • Neph, S. et al. BEDOPS: high-performance genomic feature operations. Bioinformatics 28, 1919-1920 (2012).
    • (2012) Bioinformatics , vol.28 , pp. 1919-1920
    • Neph, S.1
  • 61
    • 77951770756 scopus 로고    scopus 로고
    • BEDTools: A flexible suite of utilities for comparing genomic features
    • Quinlan, A. R., Hall, I. M. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26, 841-842 (2010).
    • (2010) Bioinformatics , vol.26 , pp. 841-842
    • Quinlan, A.R.1    Hall, I.M.2
  • 63
    • 79953300078 scopus 로고    scopus 로고
    • FIMO: Scanning for occurrences of a given motif
    • Grant, C. E., Bailey, T. L., Noble, W. S. FIMO: scanning for occurrences of a given motif. Bioinformatics 27, 1017-1018 (2011).
    • (2011) Bioinformatics , vol.27 , pp. 1017-1018
    • Grant, C.E.1    Bailey, T.L.2    Noble, W.S.3
  • 64
    • 84862214168 scopus 로고    scopus 로고
    • ScerTF: A comprehensive database of benchmarked position weight matrices for Saccharomyces species
    • Spivak, A. T., Stormo, G. D. ScerTF: a comprehensive database of benchmarked position weight matrices for Saccharomyces species. Nucleic Acids Res. 40, D162-D168 (2012).
    • (2012) Nucleic Acids Res. , vol.40 , pp. D162-D168
    • Spivak, A.T.1    Stormo, G.D.2
  • 65
    • 79958117256 scopus 로고    scopus 로고
    • MEME-ChIP: Motif analysis of large DNA datasets
    • Machanick, P., Bailey, T. L. MEME-ChIP: motif analysis of large DNA datasets. Bioinformatics 27, 1696-1697 (2011).
    • (2011) Bioinformatics , vol.27 , pp. 1696-1697
    • Machanick, P.1    Bailey, T.L.2
  • 67
    • 84883590358 scopus 로고    scopus 로고
    • DNAshape: A method for the high-throughput prediction of DNA structural features on a genomic scale
    • Zhou, T. et al. DNAshape: a method for the high-throughput prediction of DNA structural features on a genomic scale. Nucleic Acids Res. 41, W56-W62 (2013).
    • (2013) Nucleic Acids Res. , vol.41 , pp. W56-W62
    • Zhou, T.1
  • 68
    • 84891768983 scopus 로고    scopus 로고
    • TFBSshape: A motif database for DNA shape features of transcription factor binding sites
    • Yang, L. et al. TFBSshape: a motif database for DNA shape features of transcription factor binding sites. Nucleic Acids Res. 42, D148-D155 (2014).
    • (2014) Nucleic Acids Res. , vol.42 , pp. D148-D155
    • Yang, L.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.