메뉴 건너뛰기




Volumn 6, Issue , 2015, Pages

IRSp53 senses negative membrane curvature and phase separates along membrane tubules

Author keywords

[No Author keywords available]

Indexed keywords

BIOASSAY; CELL ORGANELLE; CELLS AND CELL COMPONENTS; CYTOPLASM; DISABILITY; GENE EXPRESSION; LEAF; MEMBRANE; PROTEIN;

EID: 84944339554     PISSN: None     EISSN: 20411723     Source Type: Journal    
DOI: 10.1038/ncomms9529     Document Type: Article
Times cited : (181)

References (64)
  • 1
    • 64249110493 scopus 로고    scopus 로고
    • The BAR domain superfamily: Membrane-molding macromolecules
    • Frost, A., Unger, V. M. & De Camilli, P. The BAR domain superfamily: membrane-molding macromolecules. Cell 137, 191-196 (2009).
    • (2009) Cell , vol.137 , pp. 191-196
    • Frost, A.1    Unger, V.M.2    De Camilli, P.3
  • 2
    • 77950594242 scopus 로고    scopus 로고
    • Subcellular membrane curvature mediated by the BAR domain superfamily proteins. Semin
    • Suetsugu, S., Toyooka, K. & Senju, Y. Subcellular membrane curvature mediated by the BAR domain superfamily proteins. Semin. Cell Dev. Biol. 21, 340-349 (2010).
    • (2010) Cell Dev. Biol. , vol.21 , pp. 340-349
    • Suetsugu, S.1    Toyooka, K.2    Senju, Y.3
  • 3
    • 84870055317 scopus 로고    scopus 로고
    • Membrane curvature and its generation by BAR proteins
    • Mim, C. & Unger, V. M. Membrane curvature and its generation by BAR proteins. Trends Biochem. Sci. 37, 526-533 (2012).
    • (2012) Trends Biochem. Sci. , vol.37 , pp. 526-533
    • Mim, C.1    Unger, V.M.2
  • 4
    • 84896852788 scopus 로고    scopus 로고
    • BAR domain scaffolds in dynaminmediated membrane fission
    • Daumke, O., Roux, A. & Haucke, V. BAR domain scaffolds in dynaminmediated membrane fission. Cell 156, 882-892 (2014).
    • (2014) Cell , vol.156 , pp. 882-892
    • Daumke, O.1    Roux, A.2    Haucke, V.3
  • 5
    • 81055141568 scopus 로고    scopus 로고
    • Determinants of endocytic membrane geometry, stability, and scission
    • Kishimoto, T. et al. Determinants of endocytic membrane geometry, stability, and scission. Proc. Natl Acad. Sci. USA 108, E979-E988 (2011).
    • (2011) Proc. Natl Acad. Sci. USA , vol.108 , pp. E979-E988
    • Kishimoto, T.1
  • 7
    • 13444291116 scopus 로고    scopus 로고
    • Structural basis of filopodia formation induced by the IRSp53/MIM homology domain of human IRSp53
    • Millard, T. H. et al. Structural basis of filopodia formation induced by the IRSp53/MIM homology domain of human IRSp53. EMBO J. 24, 240-250 (2005).
    • (2005) EMBO J. , vol.24 , pp. 240-250
    • Millard, T.H.1
  • 8
    • 33947728052 scopus 로고    scopus 로고
    • Missing-in-metastasis and IRSp53 deform PI(4,5)P2-rich membranes by an inverse BAR domain-like mechanism
    • Mattila, P. K. et al. Missing-in-metastasis and IRSp53 deform PI(4,5)P2-rich membranes by an inverse BAR domain-like mechanism. J. Cell Biol. 176, 953-964 (2007).
    • (2007) J. Cell Biol. , vol.176 , pp. 953-964
    • Mattila, P.K.1
  • 9
    • 58349120603 scopus 로고    scopus 로고
    • Molecular Mechanisms of membrane deformation by I-BAR domain proteins
    • Saarikangas, J. et al. Molecular Mechanisms of membrane deformation by I-BAR domain proteins. Curr. Biol. 19, 95-107 (2009).
    • (2009) Curr. Biol. , vol.19 , pp. 95-107
    • Saarikangas, J.1
  • 10
    • 33845794075 scopus 로고    scopus 로고
    • The RAC binding domain/IRSp53-MIM homology domain of IRSp53 induces RAC-dependent membrane deformation
    • Suetsugu, S. et al. The RAC binding domain/IRSp53-MIM homology domain of IRSp53 induces RAC-dependent membrane deformation. J. Biol. Chem. 281, 35347-35358 (2006).
    • (2006) J. Biol. Chem. , vol.281 , pp. 35347-35358
    • Suetsugu, S.1
  • 11
    • 28444452974 scopus 로고    scopus 로고
    • Dynamin and the actin cytoskeleton cooperatively regulate plasma membrane invagination by BAR and F-BAR proteins
    • Itoh, T. et al. Dynamin and the actin cytoskeleton cooperatively regulate plasma membrane invagination by BAR and F-BAR proteins. Dev. Cell 9, 791-804 (2005).
    • (2005) Dev. Cell , vol.9 , pp. 791-804
    • Itoh, T.1
  • 12
    • 33748288113 scopus 로고    scopus 로고
    • BAR, F-BAR (EFC) and ENTH/ANTH domains in the regulation of membrane-cytosol interfaces and membrane curvature
    • Itoh, T. & De Camilli, P. BAR, F-BAR (EFC) and ENTH/ANTH domains in the regulation of membrane-cytosol interfaces and membrane curvature. Biochim. Biophys. Acta-Mol. Cell Biol. L 1761, 897-912 (2006).
    • (2006) Biochim. Biophys. Acta-Mol. Cell Biol. L , vol.1761 , pp. 897-912
    • Itoh, T.1    De Camilli, P.2
  • 13
    • 1442317538 scopus 로고    scopus 로고
    • BAR domains as sensors of membrane curvature: The amphiphysin BAR structure
    • Peter, B. J. et al. BAR domains as sensors of membrane curvature: the amphiphysin BAR structure. Science 303, 495-499 (2004).
    • (2004) Science , vol.303 , pp. 495-499
    • Peter, B.J.1
  • 14
    • 33745523031 scopus 로고    scopus 로고
    • Mechanism of endophilin N-BAR domain-mediated membrane curvature
    • Gallop, J. L. et al. Mechanism of endophilin N-BAR domain-mediated membrane curvature. EMBO J. 25, 2898-2910 (2006).
    • (2006) EMBO J. , vol.25 , pp. 2898-2910
    • Gallop, J.L.1
  • 15
    • 84885871112 scopus 로고    scopus 로고
    • CDC42 switches IRSp53 from inhibition of actin growth to elongation by clustering of VASP
    • Disanza, A. et al. CDC42 switches IRSp53 from inhibition of actin growth to elongation by clustering of VASP. EMBO J. 32, 2735-2750 (2013).
    • (2013) EMBO J. , vol.32 , pp. 2735-2750
    • Disanza, A.1
  • 16
    • 0035975963 scopus 로고    scopus 로고
    • Cdc42 induces filopodia by promoting the formation of an IRSp53:Mena complex
    • Krugmann, S. et al. Cdc42 induces filopodia by promoting the formation of an IRSp53:Mena complex. Curr. Biol. 11, 1645-1655 (2001).
    • (2001) Curr. Biol. , vol.11 , pp. 1645-1655
    • Krugmann, S.1
  • 17
    • 33751543109 scopus 로고    scopus 로고
    • Regulation of cell shape by Cdc42 is mediated by the synergic actin-bundling activity of the Eps8-IRSp53 complex
    • Disanza, A. et al. Regulation of cell shape by Cdc42 is mediated by the synergic actin-bundling activity of the Eps8-IRSp53 complex. Nat. Cell Biol. 8, 1337-1347 (2006).
    • (2006) Nat. Cell Biol. , vol.8 , pp. 1337-1347
    • Disanza, A.1
  • 18
    • 84856945929 scopus 로고    scopus 로고
    • MDia1 and WAVE2 proteins interact directly with IRSp53 in filopodia and are Involved in filopodium formation
    • Goh, W. I. et al. mDia1 and WAVE2 proteins interact directly with IRSp53 in filopodia and are Involved in filopodium formation. J. Biol. Chem. 287, 4702-4714 (2012).
    • (2012) J. Biol. Chem. , vol.287 , pp. 4702-4714
    • Goh, W.I.1
  • 19
    • 79951558392 scopus 로고    scopus 로고
    • I-BAR domain proteins: Linking actin and plasma membrane dynamics
    • Zhao, H., Pykäläinen, A. & Lappalainen, P. I-BAR domain proteins: linking actin and plasma membrane dynamics. Curr. Opin. Cell Biol. 23, 14-21 (2011).
    • (2011) Curr. Opin. Cell Biol. , vol.23 , pp. 14-21
    • Zhao, H.1    Pykäläinen, A.2    Lappalainen, P.3
  • 20
    • 77950594066 scopus 로고    scopus 로고
    • I-BAR domains, IRSp53 and filopodium formation. Semin
    • Ahmed, S., Goh, W. I. & Bu, W. I-BAR domains, IRSp53 and filopodium formation. Semin. Cell Dev. Biol. 21, 350-356 (2010).
    • (2010) Cell Dev. Biol. , vol.21 , pp. 350-356
    • Ahmed, S.1    Goh, W.I.2    Bu, W.3
  • 21
    • 84897996949 scopus 로고    scopus 로고
    • Mechanism of IRSp53 inhibition and combinatorial activation by Cdc42 and downstream effectors
    • Kast, D. J. et al. Mechanism of IRSp53 inhibition and combinatorial activation by Cdc42 and downstream effectors. Nat. Struct. Mol. Biol. 21, 413-422 (2014).
    • (2014) Nat. Struct. Mol. Biol. , vol.21 , pp. 413-422
    • Kast, D.J.1
  • 22
    • 39149109271 scopus 로고    scopus 로고
    • IRSp53: Crossing the road of membrane and actin dynamics in the formation of membrane protrusions
    • Scita, G., Confalonieri, S., Lappalainen, P. & Suetsugu, S. IRSp53: crossing the road of membrane and actin dynamics in the formation of membrane protrusions. Trends Cell Biol. 18, 52-60 (2008).
    • (2008) Trends Cell Biol. , vol.18 , pp. 52-60
    • Scita, G.1    Confalonieri, S.2    Lappalainen, P.3    Suetsugu, S.4
  • 23
    • 44349179335 scopus 로고    scopus 로고
    • Filopodia: Molecular architecture and cellular functions
    • Mattila, P. K. & Lappalainen, P. Filopodia: molecular architecture and cellular functions. Nat. Rev. Mol. Cell Biol. 9, 446-454 (2008).
    • (2008) Nat. Rev. Mol. Cell Biol. , vol.9 , pp. 446-454
    • Mattila, P.K.1    Lappalainen, P.2
  • 24
    • 2442458996 scopus 로고    scopus 로고
    • A novel actin bundling/filopodium-forming domain conserved in insulin receptor tyrosine kinase substrate p53 and missing in metastasis protein
    • Yamagishi, A., Masuda, M., Ohki, T., Onishi, H. & Mochizuki, N. A novel actin bundling/filopodium-forming domain conserved in insulin receptor tyrosine kinase substrate p53 and missing in metastasis protein. J. Biol. Chem. 279, 14929-14936 (2004).
    • (2004) J. Biol. Chem. , vol.279 , pp. 14929-14936
    • Yamagishi, A.1    Masuda, M.2    Ohki, T.3    Onishi, H.4    Mochizuki, N.5
  • 25
    • 66249118393 scopus 로고    scopus 로고
    • Coordination of membrane and actin cytoskeleton dynamics during filopodia protrusion
    • Yang, C., Hoelzle, M., Disanza, A., Scita, G. & Svitkina, T. Coordination of membrane and actin cytoskeleton dynamics during filopodia protrusion. PLoS ONE 4, e5678 (2009).
    • (2009) PLoS ONE , vol.4 , pp. e5678
    • Yang, C.1    Hoelzle, M.2    Disanza, A.3    Scita, G.4    Svitkina, T.5
  • 26
    • 84856002337 scopus 로고    scopus 로고
    • Nature of curvature-coupling of amphiphysin with membranes depends on its bound density
    • Sorre, B. et al. Nature of curvature-coupling of amphiphysin with membranes depends on its bound density. Proc. Natl Acad. Sci. USA 109, 173-178 (2012).
    • (2012) Proc. Natl Acad. Sci. USA , vol.109 , pp. 173-178
    • Sorre, B.1
  • 27
    • 84859902777 scopus 로고    scopus 로고
    • Nonlinear sorting, curvature generation, and crowding of endophilin n-bar on tubular membranes
    • Zhu, C., Das, S. & Baumgart, T. Nonlinear sorting, curvature generation, and crowding of endophilin n-bar on tubular membranes. Biophys. J. 102, 1837-1845 (2012).
    • (2012) Biophys. J. , vol.102 , pp. 1837-1845
    • Zhu, C.1    Das, S.2    Baumgart, T.3
  • 28
    • 65249180850 scopus 로고    scopus 로고
    • Curvature-driven lipid sorting needs proximity to a demixing point and is aided by proteins
    • Sorre, B. et al. Curvature-driven lipid sorting needs proximity to a demixing point and is aided by proteins. Proc. Natl Acad. Sci. USA 106, 5622-5626 (2009).
    • (2009) Proc. Natl Acad. Sci. USA , vol.106 , pp. 5622-5626
    • Sorre, B.1
  • 29
    • 66249127141 scopus 로고    scopus 로고
    • Sorting of lipids and proteins in membrane curvature gradients
    • Tian, A. & Baumgart, T. Sorting of lipids and proteins in membrane curvature gradients. Biophys. J. 96, 2676-2688 (2009).
    • (2009) Biophys. J. , vol.96 , pp. 2676-2688
    • Tian, A.1    Baumgart, T.2
  • 30
    • 77749246128 scopus 로고    scopus 로고
    • Membrane curvature controls dynamin polymerization
    • Roux, A. et al. Membrane curvature controls dynamin polymerization. Proc. Natl Acad. Sci. USA 107, 4141-4146 (2010).
    • (2010) Proc. Natl Acad. Sci. USA , vol.107 , pp. 4141-4146
    • Roux, A.1
  • 31
    • 84891652219 scopus 로고    scopus 로고
    • Membrane shape modulates trans-membrane protein distribution
    • Aimon, S. et al. Membrane shape modulates trans-membrane protein distribution. Dev. Cell 28, 212-218 (2014).
    • (2014) Dev. Cell , vol.28 , pp. 212-218
    • Aimon, S.1
  • 32
    • 84877032896 scopus 로고    scopus 로고
    • Unexpected membrane dynamics unveiled by membrane nanotube extrusion
    • Campillo, C. et al. Unexpected membrane dynamics unveiled by membrane nanotube extrusion. Biophys. J. 104, 1248-1256 (2013).
    • (2013) Biophys. J. , vol.104 , pp. 1248-1256
    • Campillo, C.1
  • 33
    • 28444477387 scopus 로고    scopus 로고
    • Plasma membrane phosphoinositide organization by protein electrostatics
    • McLaughlin, S. & Murray, D. Plasma membrane phosphoinositide organization by protein electrostatics. Nature 438, 605-611 (2005).
    • (2005) Nature , vol.438 , pp. 605-611
    • McLaughlin, S.1    Murray, D.2
  • 34
    • 84868036609 scopus 로고    scopus 로고
    • Membrane shape at the edge of the dynamin helix sets location and duration of the fission reaction
    • Morlot, S. et al. Membrane shape at the edge of the dynamin helix sets location and duration of the fission reaction. Cell 151, 619-629 (2012).
    • (2012) Cell , vol.151 , pp. 619-629
    • Morlot, S.1
  • 35
    • 11144220854 scopus 로고    scopus 로고
    • A vesicle bioreactor as a step toward an artificial cell assembly
    • Noireaux, V. & Libchaber, A. A vesicle bioreactor as a step toward an artificial cell assembly. Proc. Natl Acad. Sci. USA 101, 17669-17674 (2004).
    • (2004) Proc. Natl Acad. Sci. USA , vol.101 , pp. 17669-17674
    • Noireaux, V.1    Libchaber, A.2
  • 36
    • 33846122301 scopus 로고    scopus 로고
    • Spontaneous transfer of phospholipid-coated oil-in-oil andwater-in-oil micro-droplets through an oil/water interface
    • Yamada, A. et al. Spontaneous transfer of phospholipid-coated oil-in-oil andwater-in-oil micro-droplets through an oil/water interface. Langmuir 22, 9824-9828 (2006).
    • (2006) Langmuir , vol.22 , pp. 9824-9828
    • Yamada, A.1
  • 37
    • 58849129778 scopus 로고    scopus 로고
    • Reconstitution of an actin cortex inside a liposome
    • Pontani, L.-L. et al. Reconstitution of an actin cortex inside a liposome. Biophys. J. 96, 192-198 (2009).
    • (2009) Biophys. J. , vol.96 , pp. 192-198
    • Pontani, L.-L.1
  • 38
    • 79955662274 scopus 로고    scopus 로고
    • Continuous droplet interface crossing encapsulation (cDICE) for high throughput monodisperse vesicle design
    • Abkarian, M., Loiseau, E. & Massiera, G. Continuous droplet interface crossing encapsulation (cDICE) for high throughput monodisperse vesicle design. Soft Matter 7, 4610-4614 (2011).
    • (2011) Soft Matter , vol.7 , pp. 4610-4614
    • Abkarian, M.1    Loiseau, E.2    Massiera, G.3
  • 39
    • 79959343843 scopus 로고    scopus 로고
    • Forming giant vesicles with controlled membrane composition, asymmetry, and contents
    • Richmond, D. L. et al. Forming giant vesicles with controlled membrane composition, asymmetry, and contents. Proc. Natl Acad. Sci. USA 106, 9431-9436 (2011).
    • (2011) Proc. Natl Acad. Sci. USA , vol.106 , pp. 9431-9436
    • Richmond, D.L.1
  • 40
    • 80051487510 scopus 로고    scopus 로고
    • Encapsulation of active cytoskeletal protein networks in cell-sized liposomes
    • Tsai, F.-C., Stuhrmann, B. & Koenderink, G. H. Encapsulation of active cytoskeletal protein networks in cell-sized liposomes. Langmuir 27, 10061-10071 (2011).
    • (2011) Langmuir , vol.27 , pp. 10061-10071
    • Tsai, F.-C.1    Stuhrmann, B.2    Koenderink, G.H.3
  • 41
    • 84879830144 scopus 로고    scopus 로고
    • Gel-assisted formation of giant unilamellar vesicles
    • Weinberger, A. et al. Gel-assisted formation of giant unilamellar vesicles. Biophys. J. 105, 154-164 (2013).
    • (2013) Biophys. J. , vol.105 , pp. 154-164
    • Weinberger, A.1
  • 43
    • 0001029147 scopus 로고
    • Preparation of giant vesicles by external AC electric fields. Kinetics and applications
    • Angelova, M. I., Soléau, S., Méléard, P., Faucon, J. F. & Bothorel, P. Preparation of giant vesicles by external AC electric fields. Kinetics and applications. Prog. Coll. Pol. Sci. 89, 127-131 (1992).
    • (1992) Prog. Coll. Pol. Sci. , vol.89 , pp. 127-131
    • Angelova, M.I.1    Soléau, S.2    Méléard, P.3    Faucon, J.F.4    Bothorel, P.5
  • 44
    • 58149175350 scopus 로고    scopus 로고
    • Giant unilamellar vesicles containing phosphatidylinositol(4,5)bisphosphate: Characterization and functionality
    • Carvalho, K., Ramos, L., Roy, C. & Picart, C. Giant unilamellar vesicles containing phosphatidylinositol(4,5)bisphosphate: characterization and functionality. Biophys. J. 95, 4348-4360 (2008).
    • (2008) Biophys. J. , vol.95 , pp. 4348-4360
    • Carvalho, K.1    Ramos, L.2    Roy, C.3    Picart, C.4
  • 45
    • 17044375415 scopus 로고    scopus 로고
    • Giant vesicles formed by gentle hydration and electroformation: A comparison by fluorescence microscopy
    • Rodriguez, N., Pincet, F. & Cribier, S. Giant vesicles formed by gentle hydration and electroformation: a comparison by fluorescence microscopy. Colloids Surf. B Biointerfaces 42, 125-130 (2005).
    • (2005) Colloids Surf. B Biointerfaces , vol.42 , pp. 125-130
    • Rodriguez, N.1    Pincet, F.2    Cribier, S.3
  • 46
    • 84875772792 scopus 로고    scopus 로고
    • FBAR Syndapin 1 recognizes and stabilizes highly curved tubular membranes in a concentration dependent manner
    • Ramesh, P. et al. FBAR Syndapin 1 recognizes and stabilizes highly curved tubular membranes in a concentration dependent manner. Sci. Rep. 3, 1565 (2013).
    • (2013) Sci. Rep. , vol.3 , pp. 1565
    • Ramesh, P.1
  • 47
    • 79959680409 scopus 로고    scopus 로고
    • Membrane-mediated interactions and the dynamics of dynamin oligomers on membrane tubes
    • Shlomovitz, R., Gov, N. S. & Roux, A. Membrane-mediated interactions and the dynamics of dynamin oligomers on membrane tubes. New J. Phys. 13, 065008 (2011).
    • (2011) New J. Phys. , vol.13 , pp. 065008
    • Shlomovitz, R.1    Gov, N.S.2    Roux, A.3
  • 48
    • 84924891319 scopus 로고    scopus 로고
    • Sorting of integral membrane proteins mediated by curvature-dependent protein-lipid bilayer interaction
    • Bozic, B., Das, S. L. & Svetina, S. Sorting of integral membrane proteins mediated by curvature-dependent protein-lipid bilayer interaction. Soft Matter 11, 2479-2487 (2015).
    • (2015) Soft Matter , vol.11 , pp. 2479-2487
    • Bozic, B.1    Das, S.L.2    Svetina, S.3
  • 49
    • 33244462037 scopus 로고    scopus 로고
    • Dynamics of membranes driven by actin polymerization
    • Gov, N. S. & Gopinathan, A. Dynamics of membranes driven by actin polymerization. Biophys. J. 90, 454-469 (2006).
    • (2006) Biophys. J. , vol.90 , pp. 454-469
    • Gov, N.S.1    Gopinathan, A.2
  • 50
    • 75649148825 scopus 로고    scopus 로고
    • Membrane-mediated interactions drive the condensation and coalescence of FtsZ rings
    • Shlomovitz, R. & Gov, N. S. Membrane-mediated interactions drive the condensation and coalescence of FtsZ rings. Phys. Biol. 6, 046017 (2009).
    • (2009) Phys. Biol. , vol.6 , pp. 046017
    • Shlomovitz, R.1    Gov, N.S.2
  • 51
    • 19044375887 scopus 로고    scopus 로고
    • Formation and interaction of membrane tubes
    • Derényi, I., Jülicher, F. & Prost, J. Formation and interaction of membrane tubes. Phys. Rev. Lett. 88, 238101 (2002).
    • (2002) Phys. Rev. Lett. , vol.88 , pp. 238101
    • Derényi, I.1    Jülicher, F.2    Prost, J.3
  • 52
    • 84937627872 scopus 로고    scopus 로고
    • MIM-induced membrane bending promotes dendritic spine initiation
    • Saarikangas, J. et al. MIM-induced membrane bending promotes dendritic spine initiation. Dev. Cell 33, 644-659 (2015).
    • (2015) Dev. Cell , vol.33 , pp. 644-659
    • Saarikangas, J.1
  • 53
    • 84861895256 scopus 로고    scopus 로고
    • Curvature sorting of proteins on a cylindrical lipid membrane tether connected to a reservoir
    • Singh, P., Mahata, P., Baumgart, T. & Das, S. L. Curvature sorting of proteins on a cylindrical lipid membrane tether connected to a reservoir. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 85, 051906 (2012).
    • (2012) Phys. Rev. e Stat. Nonlin. Soft Matter Phys. , vol.85 , pp. 051906
    • Singh, P.1    Mahata, P.2    Baumgart, T.3    Das, S.L.4
  • 54
    • 70350011898 scopus 로고    scopus 로고
    • Modeling Membrane deformations and lipid demixing upon protein-membrane interaction: The BAR dimer adsorption
    • Khelashvili, G., Harries, D. & Weinstein, H. Modeling Membrane deformations and lipid demixing upon protein-membrane interaction: the BAR dimer adsorption. Biophys. J. 97, 1626-1635 (2009).
    • (2009) Biophys. J. , vol.97 , pp. 1626-1635
    • Khelashvili, G.1    Harries, D.2    Weinstein, H.3
  • 55
    • 40049086567 scopus 로고    scopus 로고
    • Structural basis of membrane invagination by F-BAR domains
    • Frost, A. et al. Structural basis of membrane invagination by F-BAR domains. Cell 132, 807-817 (2008).
    • (2008) Cell , vol.132 , pp. 807-817
    • Frost, A.1
  • 56
    • 84859175189 scopus 로고    scopus 로고
    • Structural basis of membrane bending by the N-BAR protein endophilin
    • Mim, C. et al. Structural basis of membrane bending by the N-BAR protein endophilin. Cell 149, 137-145 (2012).
    • (2012) Cell , vol.149 , pp. 137-145
    • Mim, C.1
  • 57
    • 84884546644 scopus 로고    scopus 로고
    • Membrane-sculpting BAR domains generate stable lipid microdomains
    • Zhao, H. et al. Membrane-sculpting BAR domains generate stable lipid microdomains. Cell Rep. 4, 1213-1223 (2013).
    • (2013) Cell Rep. , vol.4 , pp. 1213-1223
    • Zhao, H.1
  • 58
    • 84923344501 scopus 로고    scopus 로고
    • BIN1/M-Amphiphysin2 induces clustering of phosphoinositides to recruit its downstream partner dynamin
    • Picas, L. et al. BIN1/M-Amphiphysin2 induces clustering of phosphoinositides to recruit its downstream partner dynamin. Nat. Commun. 5, 5647 (2014).
    • (2014) Nat. Commun. , vol.5 , pp. 5647
    • Picas, L.1
  • 59
    • 77956537388 scopus 로고    scopus 로고
    • Self-assembly of filopodia-like structures on supported lipid bilayers
    • Lee, K., Gallop, J. L., Rambani, K. & Kirschner, M. W. Self-assembly of filopodia-like structures on supported lipid bilayers. Science 329, 1341-1345 (2010).
    • (2010) Science , vol.329 , pp. 1341-1345
    • Lee, K.1    Gallop, J.L.2    Rambani, K.3    Kirschner, M.W.4
  • 60
    • 77953244134 scopus 로고    scopus 로고
    • FCHo proteins are nucleators of clathrin-mediated endocytosis
    • Henne, W. M. et al. FCHo proteins are nucleators of clathrin-mediated endocytosis. Science 328, 1281-1284 (2010).
    • (2010) Science , vol.328 , pp. 1281-1284
    • Henne, W.M.1
  • 61
    • 84899543355 scopus 로고    scopus 로고
    • ProSAP1 and membrane nanodomain-associated syndapin i promote postsynapse formation and function
    • Schneider, K. et al. ProSAP1 and membrane nanodomain-associated syndapin I promote postsynapse formation and function. J. Cell Biol. 205, 197-215 (2014).
    • (2014) J. Cell Biol. , vol.205 , pp. 197-215
    • Schneider, K.1
  • 62
    • 0019412881 scopus 로고
    • Thermoelasticity of large lecithin bilayer vesicles
    • Kwok, R. & Evans, E. Thermoelasticity of large lecithin bilayer vesicles. Biophys. J. 35, 637-652 (1981).
    • (1981) Biophys. J. , vol.35 , pp. 637-652
    • Kwok, R.1    Evans, E.2
  • 64
    • 33244462037 scopus 로고    scopus 로고
    • Dynamics of membranes driven by actin polymerization
    • Gov, N. S. & Gopinathan, A. Dynamics of membranes driven by actin polymerization. Biophys. J. 90, 454-469 (2006).
    • (2006) Biophys. J. , vol.90 , pp. 454-469
    • Gov, N.S.1    Gopinathan, A.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.