메뉴 건너뛰기




Volumn 50, Issue 16, 2015, Pages 2427-2435

Removal of Copper and Zinc from Ground Water by Granular Zero-Valent Iron: A Mechanistic Study

Author keywords

contamination; ground water remediation; heavy metals; PhreePlot; PRB

Indexed keywords

CONTAMINATION; COPPER; CORROSION; GEOCHEMISTRY; GROUNDWATER; GROUNDWATER POLLUTION; HEAVY METALS; IMPURITIES; IRON; WATER TREATMENT; X RAY DIFFRACTION ANALYSIS; ZINC;

EID: 84944063797     PISSN: 01496395     EISSN: 15205754     Source Type: Journal    
DOI: 10.1080/01496395.2015.1058822     Document Type: Article
Times cited : (8)

References (48)
  • 2
    • 0038832950 scopus 로고    scopus 로고
    • Removal of dissolved heavy metals from acid rock drainage using iron metal
    • T.E.Shokes, ; G.Möller, (1998) Removal of dissolved heavy metals from acid rock drainage using iron metal. Environmental Science & Technology 33(2): 282–287.
    • (1998) Environmental Science & Technology , vol.33 , Issue.2 , pp. 282-287
    • Shokes, T.E.1    Möller, G.2
  • 3
    • 0029328683 scopus 로고
    • Zero-valent iron for the in situ remediation of selected metals in groundwater
    • K.J.Cantrell, ; D.I.Kaplan, ; T.W.Wietsma, (1995) Zero-valent iron for the in situ remediation of selected metals in groundwater. Journal of Hazardous Materials 42(2): 201–212.
    • (1995) Journal of Hazardous Materials , vol.42 , Issue.2 , pp. 201-212
    • Cantrell, K.J.1    Kaplan, D.I.2    Wietsma, T.W.3
  • 4
    • 0028995358 scopus 로고
    • The amelioration of acid mine drainage by an in situ electrochemical method-I. Employing scrap iron as the sacrificial anode
    • G.S.Shelp, ; W.Chesworth, ; G.Spiers, (1995) The amelioration of acid mine drainage by an in situ electrochemical method-I. Employing scrap iron as the sacrificial anode. Applied Geochemistry 10(6): 705–713.
    • (1995) Applied Geochemistry , vol.10 , Issue.6 , pp. 705-713
    • Shelp, G.S.1    Chesworth, W.2    Spiers, G.3
  • 5
    • 0036228765 scopus 로고    scopus 로고
    • Removal of As, Mn, Mo, Se, U, V and Zn from groundwater by zero-valent iron in a passive treatment cell: Reaction progress modeling
    • S.J.Morrison, ; D.R.Metzler, ; B.P.Dwyer, (2002) Removal of As, Mn, Mo, Se, U, V and Zn from groundwater by zero-valent iron in a passive treatment cell: Reaction progress modeling. Journal of Contaminant Hydrology 56(1–2): 99–116.
    • (2002) Journal of Contaminant Hydrology , vol.56 , Issue.1-2 , pp. 99-116
    • Morrison, S.J.1    Metzler, D.R.2    Dwyer, B.P.3
  • 6
    • 28444472723 scopus 로고    scopus 로고
    • Removal and Inactivation of Waterborne viruses using zerovalent iron
    • Y.You, ; J.Han, ; P.C.Chiu, ; Y.Jin, (2005) Removal and Inactivation of Waterborne viruses using zerovalent iron. Environmental Science & Technology 39(23): 9263–9269.
    • (2005) Environmental Science & Technology , vol.39 , Issue.23 , pp. 9263-9269
    • You, Y.1    Han, J.2    Chiu, P.C.3    Jin, Y.4
  • 7
    • 35349000263 scopus 로고    scopus 로고
    • A simple and effective arsenic filter based on composite iron matrix: Development and deployment studies for groundwater of Bangladesh
    • A.Hussam, ; A.K.M.Munir, (2007) A simple and effective arsenic filter based on composite iron matrix: Development and deployment studies for groundwater of Bangladesh. Journal of Environmental Science and Health, Part A 42(12): 1869–1878.
    • (2007) Journal of Environmental Science and Health, Part A , vol.42 , Issue.12 , pp. 1869-1878
    • Hussam, A.1    Munir, A.K.M.2
  • 8
    • 84944062145 scopus 로고    scopus 로고
    • The Interstate Technology & Regulatory Council, Washington D.C.:
    • ITRC Permeable Reactive Barrier: Technology Update PRB-5; The Interstate Technology & Regulatory Council: Washington D.C., 2011.
    • (2011) Technology Update PRB-5
  • 9
    • 0642311224 scopus 로고    scopus 로고
    • Laboratory evaluation of zero-valent iron to treat water impacted by acid mine drainage
    • R.T.Wilkin, ; M.S.McNeil, (2003) Laboratory evaluation of zero-valent iron to treat water impacted by acid mine drainage. Chemosphere 53(7): 715–725.
    • (2003) Chemosphere , vol.53 , Issue.7 , pp. 715-725
    • Wilkin, R.T.1    McNeil, M.S.2
  • 10
    • 26444432227 scopus 로고    scopus 로고
    • Removal of dissolved metals by zero-valent iron (ZVI): Kinetics, equilibria, processes and implications for stormwater runoff treatment
    • R.Rangsivek, ; M.R.Jekel, (2005) Removal of dissolved metals by zero-valent iron (ZVI): Kinetics, equilibria, processes and implications for stormwater runoff treatment. Water Research 39(17): 4153–4163.
    • (2005) Water Research , vol.39 , Issue.17 , pp. 4153-4163
    • Rangsivek, R.1    Jekel, M.R.2
  • 11
    • 72849150464 scopus 로고    scopus 로고
    • Life-cycle case study comparison of permeable reactive barrier versus pump-and-treat remediation
    • M.R.Higgins, ; T.M.Olson, (2009) Life-cycle case study comparison of permeable reactive barrier versus pump-and-treat remediation. Environmental Science & Technology 43(24): 9432–9438.
    • (2009) Environmental Science & Technology , vol.43 , Issue.24 , pp. 9432-9438
    • Higgins, M.R.1    Olson, T.M.2
  • 13
    • 0037114999 scopus 로고    scopus 로고
    • Formation of ferrihydrite and associated iron corrosion products in permeable reactive barriers of zero-valent iron
    • Y.Furukawa, ; J.-W.Kim, ; J.Watkins, ; R.T.Wilkin, (2002) Formation of ferrihydrite and associated iron corrosion products in permeable reactive barriers of zero-valent iron. Environmental Science & Technology 36(24): 5469–5475.
    • (2002) Environmental Science & Technology , vol.36 , Issue.24 , pp. 5469-5475
    • Furukawa, Y.1    Kim, J.-W.2    Watkins, J.3    Wilkin, R.T.4
  • 14
    • 0032888413 scopus 로고    scopus 로고
    • Mineral precipitation and porosity losses in granular iron columns
    • P.D.Mackenzie, ; D.P.Horney, ; T.M.Sivavec, (1999) Mineral precipitation and porosity losses in granular iron columns. Journal of Hazardous Materials 68(1–2): 1–17.
    • (1999) Journal of Hazardous Materials , vol.68 , Issue.1-2 , pp. 1-17
    • Mackenzie, P.D.1    Horney, D.P.2    Sivavec, T.M.3
  • 15
    • 0034307593 scopus 로고    scopus 로고
    • Performance evaluation of a zerovalent iron reactive barrier: Mineralogical characteristics
    • D.H.Phillips, ; B.Gu, ; D.B.Watson, ; Y.Roh, ; L.Liang, ; S.Y.Lee, (2000) Performance evaluation of a zerovalent iron reactive barrier: Mineralogical characteristics. Environmental Science & Technology 34(19): 4169–4176.
    • (2000) Environmental Science & Technology , vol.34 , Issue.19 , pp. 4169-4176
    • Phillips, D.H.1    Gu, B.2    Watson, D.B.3    Roh, Y.4    Liang, L.5    Lee, S.Y.6
  • 16
    • 77956448029 scopus 로고    scopus 로고
    • Solid phase studies and geochemical modelling of low-cost permeable reactive barriers
    • G.Bartzas, ; K.Komnitsas, (2010) Solid phase studies and geochemical modelling of low-cost permeable reactive barriers. Journal of Hazardous Materials 183(1–3): 301–308.
    • (2010) Journal of Hazardous Materials , vol.183 , Issue.1-3 , pp. 301-308
    • Bartzas, G.1    Komnitsas, K.2
  • 17
    • 84860393648 scopus 로고    scopus 로고
    • Identification, quantification and localization of secondary minerals in mixed Fe° fixed bed reactors
    • A.S.Ruhl, ; C.Kotré, ; U.Gernert, ; M.Jekel, (2011) Identification, quantification and localization of secondary minerals in mixed Fe° fixed bed reactors. Chemical Engineering Journal 172(2–3): 811–816.
    • (2011) Chemical Engineering Journal , vol.172 , Issue.2-3 , pp. 811-816
    • Ruhl, A.S.1    Kotré, C.2    Gernert, U.3    Jekel, M.4
  • 19
    • 78650694541 scopus 로고    scopus 로고
    • Transformation of two-line ferrihydrite to goethite and hematite as a function of pH and temperature
    • S.Das, ; M.J.Hendry, ; J.Essilfie-Dughan, (2011) Transformation of two-line ferrihydrite to goethite and hematite as a function of pH and temperature. Environmental Science & Technology 45(1): 268–275.
    • (2011) Environmental Science & Technology , vol.45 , Issue.1 , pp. 268-275
    • Das, S.1    Hendry, M.J.2    Essilfie-Dughan, J.3
  • 20
    • 80051752889 scopus 로고    scopus 로고
    • Impact of solids formation and gas production on the permeability of ZVI PRBs
    • A.Henderson, ; A.Demond, (2011) Impact of solids formation and gas production on the permeability of ZVI PRBs. Journal of Environmental Engineering 137(8): 689–696.
    • (2011) Journal of Environmental Engineering , vol.137 , Issue.8 , pp. 689-696
    • Henderson, A.1    Demond, A.2
  • 21
    • 84937238963 scopus 로고    scopus 로고
    • Removal of copper and zinc from ground water by granular zero-valent iron: A study of kinetics
    • T.M.Statham, ; K.A.Mumford, ; G.W.Stevens, (2015) Removal of copper and zinc from ground water by granular zero-valent iron: A study of kinetics. Separation Science and Technology 50(12): 1748–1756.
    • (2015) Separation Science and Technology , vol.50 , Issue.12 , pp. 1748-1756
    • Statham, T.M.1    Mumford, K.A.2    Stevens, G.W.3
  • 22
    • 84964253459 scopus 로고    scopus 로고
    • The specific reactive surface area of granular zero-valent iron in metal contaminant removal: Column experiments and modelling
    • T.M.Statham, ; L.R.Mason, ; K.A.Mumford, ; G.W.Stevens, (2015) The specific reactive surface area of granular zero-valent iron in metal contaminant removal: Column experiments and modelling. Water Research 77: 24–34.
    • (2015) Water Research , vol.77 , pp. 24-34
    • Statham, T.M.1    Mason, L.R.2    Mumford, K.A.3    Stevens, G.W.4
  • 23
    • 84919933633 scopus 로고    scopus 로고
    • Removal of copper and zinc from ground water by granular zero-valent iron: A dynamic freeze-thaw permeable reactive barrier laboratory experiment
    • T.M.Statham, ; K.A.Mumford, ; J.L.Rayner, ; G.W.Stevens, (2015) Removal of copper and zinc from ground water by granular zero-valent iron: A dynamic freeze-thaw permeable reactive barrier laboratory experiment. Cold Regions Science and Technology 110: 120–128.
    • (2015) Cold Regions Science and Technology , vol.110 , pp. 120-128
    • Statham, T.M.1    Mumford, K.A.2    Rayner, J.L.3    Stevens, G.W.4
  • 25
    • 84924047128 scopus 로고    scopus 로고
    • Metal and petroleum hydrocarbon contamination at Wilkes Station, East Antarctica
    • K.A.Fryirs, ; E.G.Hafsteinsdóttir, ; S.C.Stark, ; D.B.Gore, (2015) Metal and petroleum hydrocarbon contamination at Wilkes Station, East Antarctica. Antarctic Science 27(02): 118–133.
    • (2015) Antarctic Science , vol.27 , Issue.2 , pp. 118-133
    • Fryirs, K.A.1    Hafsteinsdóttir, E.G.2    Stark, S.C.3    Gore, D.B.4
  • 28
    • 0018920778 scopus 로고
    • The adsorption of lead and other heavy metals on oxides of manganese and iron
    • R.McKenzie, (1980) The adsorption of lead and other heavy metals on oxides of manganese and iron. Soil Research 18(1): 61–73.
    • (1980) Soil Research , vol.18 , Issue.1 , pp. 61-73
    • McKenzie, R.1
  • 29
    • 2642551385 scopus 로고    scopus 로고
    • Copper(II) sorption onto goethite, hematite and lepidocrocite: a surface complexation model based on ab initio molecular geometries and EXAFS spectroscopy
    • C.L.Peacock, ; D.M.Sherman, (2004) Copper(II) sorption onto goethite, hematite and lepidocrocite: a surface complexation model based on ab initio molecular geometries and EXAFS spectroscopy. Geochimica et Cosmochimica Acta 68(12): 2623–2637.
    • (2004) Geochimica et Cosmochimica Acta , vol.68 , Issue.12 , pp. 2623-2637
    • Peacock, C.L.1    Sherman, D.M.2
  • 30
    • 0242667582 scopus 로고    scopus 로고
    • Mineralogical characteristics and transformations during long-term operation of a zerovalent iron reactive barrier
    • D.H.Phillips, ; D.B.Watson, ; Y.Roh, ; B.Gu, (2003) Mineralogical characteristics and transformations during long-term operation of a zerovalent iron reactive barrier. Journal of Environmental Quality 32, (6), 2033–2045.
    • (2003) Journal of Environmental Quality , vol.32 , Issue.6 , pp. 2033-2045
    • Phillips, D.H.1    Watson, D.B.2    Roh, Y.3    Gu, B.4
  • 31
    • 0031443113 scopus 로고    scopus 로고
    • In-situ remediation of Cr(VI)-contaminated groundwater using permeable reactive walls: Laboratory studies
    • D.W.Blowes, ; C.J.Ptacek, ; J.L.Jambor, (1997) In-situ remediation of Cr(VI)-contaminated groundwater using permeable reactive walls: Laboratory studies. Environmental Science & Technology 31(12): 3348–3357.
    • (1997) Environmental Science & Technology , vol.31 , Issue.12 , pp. 3348-3357
    • Blowes, D.W.1    Ptacek, C.J.2    Jambor, J.L.3
  • 33
    • 0042709526 scopus 로고    scopus 로고
    • Impact of sample preparation on mineralogical analysis of zero-valent iron reactive barrier materials
    • D.H.Phillips, ; B.Gu, ; D.B.Watson, ; Y.Roh, (2003) Impact of sample preparation on mineralogical analysis of zero-valent iron reactive barrier materials. Journal of Environmental Quality 32(4): 1299–1305.
    • (2003) Journal of Environmental Quality , vol.32 , Issue.4 , pp. 1299-1305
    • Phillips, D.H.1    Gu, B.2    Watson, D.B.3    Roh, Y.4
  • 34
    • 1542286147 scopus 로고    scopus 로고
    • Thermodynamics of iron oxides: Part III. Enthalpies of formation and stability of ferrihydrite (~Fe(OH)3), schwertmannite (∼FeO(OH)3/4(SO4)1/8), and ε-Fe2O3
    • J.Majzlan, ; A.Navrotsky, ; U.Schwertmann, (2004) Thermodynamics of iron oxides: Part III. Enthalpies of formation and stability of ferrihydrite (~Fe(OH)3), schwertmannite (∼FeO(OH)3/4(SO4)1/8), and ε-Fe2O3. Geochimica et Cosmochimica Acta 68(5): 1049–1059.
    • (2004) Geochimica et Cosmochimica Acta , vol.68 , Issue.5 , pp. 1049-1059
    • Majzlan, J.1    Navrotsky, A.2    Schwertmann, U.3
  • 35
    • 0036469556 scopus 로고    scopus 로고
    • Kinetics of nitrate, nitrite, and Cr(VI) reduction by iron metal
    • M.J.Alowitz, ; M.M.Scherer, (2002) Kinetics of nitrate, nitrite, and Cr(VI) reduction by iron metal. Environmental Science & Technology 36(3): 299–306.
    • (2002) Environmental Science & Technology , vol.36 , Issue.3 , pp. 299-306
    • Alowitz, M.J.1    Scherer, M.M.2
  • 37
    • 84862193212 scopus 로고    scopus 로고
    • Divalent zinc removal from aqueous solutions by adsorption on magnetite nanoparticles: Kinetics and isotherm
    • X.S.Wang, (2012) Divalent zinc removal from aqueous solutions by adsorption on magnetite nanoparticles: Kinetics and isotherm. International Journal of Environmental Technology and Management 15(2): 103–113.
    • (2012) International Journal of Environmental Technology and Management , vol.15 , Issue.2 , pp. 103-113
    • Wang, X.S.1
  • 38
    • 25144489625 scopus 로고    scopus 로고
    • Zerovalent irons: Styles of corrosion and inorganic control on hydrogen pressure buildup
    • E.J.Reardon, (2005) Zerovalent irons: Styles of corrosion and inorganic control on hydrogen pressure buildup. Environmental Science & Technology 39(18): 7311–7317.
    • (2005) Environmental Science & Technology , vol.39 , Issue.18 , pp. 7311-7317
    • Reardon, E.J.1
  • 39
    • 0036193348 scopus 로고    scopus 로고
    • An in situ study of the role of surface films on granular iron in the permeable iron wall technology
    • K.Ritter, ; M.S.Odziemkowski, ; R.W.Gillham, (2002) An in situ study of the role of surface films on granular iron in the permeable iron wall technology. Journal of Contaminant Hydrology 55(1-2): 87–111.
    • (2002) Journal of Contaminant Hydrology , vol.551-2 , pp. 87-111
    • Ritter, K.1    Odziemkowski, M.S.2    Gillham, R.W.3
  • 40
    • 0021459411 scopus 로고
    • Cation distributions and thermodynamic properties of binary spinel solid solutions
    • H.S.C.O’Neill, ; A.Navrotsky, (1984) Cation distributions and thermodynamic properties of binary spinel solid solutions. American Mineralogist 69(7-8): 733–753.
    • (1984) American Mineralogist , vol.697-8 , pp. 733-753
    • O’Neill, H.S.C.1    Navrotsky, A.2
  • 42
    • 80053599272 scopus 로고    scopus 로고
    • Mechanistic consideration of zinc ion removal by zero-valent iron
    • N.Kishimoto, ; S.Iwano, ; Y.Narazaki, (2011) Mechanistic consideration of zinc ion removal by zero-valent iron. Water Air Soil Pollution 221: 183–189.
    • (2011) Water Air Soil Pollution , vol.221 , pp. 183-189
    • Kishimoto, N.1    Iwano, S.2    Narazaki, Y.3
  • 43
  • 45
    • 78349280701 scopus 로고    scopus 로고
    • The fundamental mechanism of aqueous contaminant removal by metallic iron
    • C.Noubactep, (2010) The fundamental mechanism of aqueous contaminant removal by metallic iron. Water SA 36: 663–670.
    • (2010) Water SA , vol.36 , pp. 663-670
    • Noubactep, C.1
  • 47
    • 84883763908 scopus 로고    scopus 로고
    • Fifteen-year assessment of a permeable reactive barrier for treatment of chromate and trichloroethylene in groundwater
    • R.T.Wilkin, ; S.D.Acree, ; R.R.Ross, ; R.W.Puls, ; T.R.Lee, ; L.L.Woods, (2014) Fifteen-year assessment of a permeable reactive barrier for treatment of chromate and trichloroethylene in groundwater. Science of the Total Environment 468–469:186-194.
    • (2014) Science of the Total Environment
    • Wilkin, R.T.1    Acree, S.D.2    Ross, R.R.3    Puls, R.W.4    Lee, T.R.5    Woods, L.L.6
  • 48
    • 0142088788 scopus 로고    scopus 로고
    • Preferential flow path development and its influence on long-term PRB performance: Column study
    • W.Kamolpornwijit, ; L.Liang, ; O.R.West, ; G.R.Moline, ; A.B.Sullivan, (2003) Preferential flow path development and its influence on long-term PRB performance: Column study. Journal of Contaminant Hydrology 66(3–4): 161–178.
    • (2003) Journal of Contaminant Hydrology , vol.66 , Issue.3-4 , pp. 161-178
    • Kamolpornwijit, W.1    Liang, L.2    West, O.R.3    Moline, G.R.4    Sullivan, A.B.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.