메뉴 건너뛰기




Volumn 44, Issue 4, 2015, Pages 1452-1459

All your data are always missing: Incorporating bias due to measurement error into the potential outcomes framework

Author keywords

Bias (Epidemiology); Causal inference; HIV; Missing data

Indexed keywords

DISEASE TREATMENT; EPIDEMIOLOGY; ERROR ANALYSIS; HUMAN IMMUNODEFICIENCY VIRUS; UNCERTAINTY ANALYSIS;

EID: 84943766838     PISSN: 03005771     EISSN: 14643685     Source Type: Journal    
DOI: 10.1093/ije/dyu272     Document Type: Article
Times cited : (56)

References (25)
  • 1
    • 1642443338 scopus 로고    scopus 로고
    • A definition of causal effect for epidemiological research
    • Hernan MA. A definition of causal effect for epidemiological research. J Epidemiol Community Health 2004;58:265-71.
    • (2004) J Epidemiol Community Health , vol.58 , pp. 265-271
    • Hernan, M.A.1
  • 2
    • 84972526326 scopus 로고
    • On the application of probability theory to agricultural experiments: essay on principles, Section 9. (1923)
    • Neyman J. On the application of probability theory to agricultural experiments: essay on principles, Section 9. (1923). Transl Stat Sci 1990;5:465-80.
    • (1990) Transl Stat Sci , vol.5 , pp. 465-480
    • Neyman, J.1
  • 3
    • 58149417330 scopus 로고
    • Estimating causal effects of treatments in randomized and nonrandomized studies
    • Rubin DB. Estimating causal effects of treatments in randomized and nonrandomized studies. J Educ Psychol 1974;65:688-701.
    • (1974) J Educ Psychol , vol.65 , pp. 688-701
    • Rubin, D.B.1
  • 4
    • 46149139403 scopus 로고
    • A new approach to causal inference in mortality studies with a sustained exposure period? Application to control of the healthy worker survivor effect
    • Robins J. A new approach to causal inference in mortality studies with a sustained exposure period? Application to control of the healthy worker survivor effect. Math Model 1986;7:1393-512.
    • (1986) Math Model , vol.7 , pp. 1393-1512
    • Robins, J.1
  • 6
    • 76349126008 scopus 로고    scopus 로고
    • Relaxation penalties and priors for plausible modeling of nonidentified bias sources
    • Greenland S. Relaxation penalties and priors for plausible modeling of nonidentified bias sources. Stat Sci 2009;24:195-210.
    • (2009) Stat Sci , vol.24 , pp. 195-210
    • Greenland, S.1
  • 7
    • 0022973522 scopus 로고
    • Identifiability, exchangeability, and epidemiological confounding
    • Greenland S, Robins JM. Identifiability, exchangeability, and epidemiological confounding. Int J Epidemiol 1986;15:413-19.
    • (1986) Int J Epidemiol , vol.15 , pp. 413-419
    • Greenland, S.1    Robins, J.M.2
  • 8
    • 85062375539 scopus 로고    scopus 로고
    • Confounding and effect modification: distribution and measure
    • VanderWeele TJ. Confounding and effect modification: distribution and measure. Epidemiol Methods 2012;1:54-82.
    • (2012) Epidemiol Methods , vol.1 , pp. 54-82
    • Van der Weele, T.J.1
  • 11
    • 74549138178 scopus 로고    scopus 로고
    • Concerning the consistency assumption in causal inference
    • VanderWeele TJ. Concerning the consistency assumption in causal inference. Epidemiology 2009;20:880-83.
    • (2009) Epidemiology , vol.20 , pp. 880-883
    • Van der Weele, T.J.1
  • 12
    • 67651098902 scopus 로고    scopus 로고
    • The consistency statement in causal inference: a definition or an assumption?
    • Cole SR, Frangakis CE. The consistency statement in causal inference: a definition or an assumption? Epidemiology 2009;20:3-5.
    • (2009) Epidemiology , vol.20 , pp. 3-5
    • Cole, S.R.1    Frangakis, C.E.2
  • 13
    • 77958464317 scopus 로고    scopus 로고
    • On the consistency rule in causal inference: axiom, definition, assumption, or theorem?
    • Pearl J. On the consistency rule in causal inference: axiom, definition, assumption, or theorem? Epidemiology 2010;21:872-75.
    • (2010) Epidemiology , vol.21 , pp. 872-875
    • Pearl, J.1
  • 15
    • 33745842238 scopus 로고    scopus 로고
    • Estimating causal effects from epidemiological data
    • Hernán MA, Robins JM. Estimating causal effects from epidemiological data. J Epidemiol Community Health 2006;60:578-86.
    • (2006) J Epidemiol Community Health , vol.60 , pp. 578-586
    • Hernán, M.A.1    Robins, J.M.2
  • 16
    • 77949377342 scopus 로고    scopus 로고
    • Invited commentary: positivity in practice
    • discussion 678-81
    • Westreich D, Cole SR. Invited commentary: positivity in practice. Am J Epidemiol 2010;171:674-7; discussion 678-81.
    • (2010) Am J Epidemiol , vol.171 , pp. 674-677
    • Westreich, D.1    Cole, S.R.2
  • 17
    • 80053169444 scopus 로고    scopus 로고
    • On Measurement Bias in Causal Inference
    • Grunwald P, Corvallis P Spirtes (eds), WA: AUAI Press, Available at, Date accessed: 9 April 2015
    • Pearl J. On Measurement Bias in Causal Inference. In: Grunwald P, Corvallis P Spirtes (eds). Proceedings of the 26th Conference on Uncertainty and Artificial Intelligence. WA: AUAI Press, 2010, 425-432. Available at http://ftp.cs.ucla.edu.libproxy.lib. unc.edu/pub/stat_ser/r357.pdf. Date accessed: 9 April 2015.
    • (2010) Proceedings of the 26th Conference on Uncertainty and Artificial Intelligence , pp. 425-432
    • Pearl, J.1
  • 18
    • 49549090865 scopus 로고    scopus 로고
    • Toward causal inference with interference
    • Hudgens MG, Halloran ME. Toward causal inference with interference. J Am Stat Assoc. 2008;103:832-42.
    • (2008) J Am Stat Assoc , vol.103 , pp. 832-842
    • Hudgens, M.G.1    Halloran, M.E.2
  • 20
    • 77956888769 scopus 로고
    • Causal diagrams for empirical research
    • Pearl J. Causal diagrams for empirical research. Biometrika 1995;82:669.
    • (1995) Biometrika , vol.82 , pp. 669
    • Pearl, J.1
  • 21
    • 0032924944 scopus 로고    scopus 로고
    • Causal diagrams for epidemiologic research
    • Greenland S, Pearl J, Robins JM. Causal diagrams for epidemiologic research. Epidemiology 1999;10:37-48.
    • (1999) Epidemiology , vol.10 , pp. 37-48
    • Greenland, S.1    Pearl, J.2    Robins, J.M.3
  • 22
    • 70349675891 scopus 로고    scopus 로고
    • Invited commentary: causal diagrams and measurement bias
    • Hernán MA, Cole SR. Invited commentary: causal diagrams and measurement bias. Am J Epidemiol 2009;170:959-62.
    • (2009) Am J Epidemiol , vol.170 , pp. 959-962
    • Hernán, M.A.1    Cole, S.R.2
  • 23
    • 83655163679 scopus 로고    scopus 로고
    • Berkson's bias, selection bias, and missing data
    • Westreich D. Berkson's bias, selection bias, and missing data. Epidemiology 2012;23:159-64.
    • (2012) Epidemiology , vol.23 , pp. 159-164
    • Westreich, D.1
  • 24
    • 84862489210 scopus 로고    scopus 로고
    • Results on differential and dependent measurement error of the exposure and the outcome using signed directed acyclic graphs
    • VanderWeele TJ, Hernán MA. Results on differential and dependent measurement error of the exposure and the outcome using signed directed acyclic graphs. Am J Epidemiol 2012;175:1303-10.
    • (2012) Am J Epidemiol , vol.175 , pp. 1303-1310
    • Van der Weele, T.J.1    Hernán, M.A.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.