메뉴 건너뛰기




Volumn 36, Issue 18, 2015, Pages 4519-4534

Comparison of different regression models and validation techniques for the assessment of wheat leaf area index from hyperspectral data

Author keywords

[No Author keywords available]

Indexed keywords

CROPS; DECISION TREES; LEAST SQUARES APPROXIMATIONS; PLANTS (BOTANY); REFLECTION; REMOTE SENSING;

EID: 84943406365     PISSN: 01431161     EISSN: 13665901     Source Type: Journal    
DOI: 10.1080/01431161.2015.1084438     Document Type: Article
Times cited : (88)

References (63)
  • 1
    • 53949085760 scopus 로고    scopus 로고
    • Efficient Kernel Orthonormalized PLS for Remote Sensing Applications
    • J.Arenas-Garcia,, and G.Camps-Valls. 2008. “Efficient Kernel Orthonormalized PLS for Remote Sensing Applications.” IEEE Transactions on Geoscience and Remote Sensing 46 (10): 2872–2881. doi:10.1109/TGRS.2008.918765.
    • (2008) IEEE Transactions on Geoscience and Remote Sensing , vol.46 , Issue.10 , pp. 2872-2881
    • Arenas-Garcia, J.1    Camps-Valls, G.2
  • 2
    • 0038356401 scopus 로고    scopus 로고
    • Global Synthesis of Leaf Area Index Observations: Implications for Ecological and Remote Sensing Studies
    • G.P.Asner,, J.M.Scurlock, and J.A.Hicke. 2003. “Global Synthesis of Leaf Area Index Observations: Implications for Ecological and Remote Sensing Studies.” Global Ecology and Biogeography 12 (3): 191–205. doi:10.1046/j.1466-822X.2003.00026.x.
    • (2003) Global Ecology and Biogeography , vol.12 , Issue.3 , pp. 191-205
    • Asner, G.P.1    Scurlock, J.M.2    Hicke, J.A.3
  • 3
    • 77955054225 scopus 로고    scopus 로고
    • Comparative Analysis of Three Chemometric Techniques for the Spectroradiometric Assessment of Canopy Chlorophyll Content in Winter Wheat
    • C.Atzberger,, M.Guérif, F.Baret, and W.Werner. 2010. “Comparative Analysis of Three Chemometric Techniques for the Spectroradiometric Assessment of Canopy Chlorophyll Content in Winter Wheat.” Computers and Electronics in Agriculture 73 (2): 165–173. doi:10.1016/j.compag.2010.05.006.
    • (2010) Computers and Electronics in Agriculture , vol.73 , Issue.2 , pp. 165-173
    • Atzberger, C.1    Guérif, M.2    Baret, F.3    Werner, W.4
  • 4
    • 2442695245 scopus 로고    scopus 로고
    • What You See May Not Be What You Get: A Brief, Nontechnical Introduction to Overfitting in Regression-Type Models
    • M.A.Babyak, 2004. “What You See May Not Be What You Get: A Brief, Nontechnical Introduction to Overfitting in Regression-Type Models.” Psychosomatic Medicine 66 (3): 411–421.
    • (2004) Psychosomatic Medicine , vol.66 , Issue.3 , pp. 411-421
    • Babyak, M.A.1
  • 5
    • 0036032044 scopus 로고    scopus 로고
    • Reliability of the Estimation of Vegetation Characteristics by Inversion of Three Canopy Reflectance Models on Airborne POLDER Data
    • C.Bacour,, S.Jacquemoud, M.Leroy, O.Hautecoeur, M.Weiss, L.Prévot, N.Bruguier, and H.Chauki. 2002. “Reliability of the Estimation of Vegetation Characteristics by Inversion of Three Canopy Reflectance Models on Airborne POLDER Data.” Agronomie 22 (6): 555–565. doi:10.1051/agro:2002039.
    • (2002) Agronomie , vol.22 , Issue.6 , pp. 555-565
    • Bacour, C.1    Jacquemoud, S.2    Leroy, M.3    Hautecoeur, O.4    Weiss, M.5    Prévot, L.6    Bruguier, N.7    Chauki, H.8
  • 6
    • 0036323088 scopus 로고    scopus 로고
    • Airborne Multispectral Data for Quantifying Leaf Area Index, Nitrogen Concentration, and Photosynthetic Efficiency in Agriculture
    • E.Boegh,, H.Soegaard., N.Broge, C.B.Hasager, N.O.Jensen, K.Schelde, and A.Thomsen. 2002. “Airborne Multispectral Data for Quantifying Leaf Area Index, Nitrogen Concentration, and Photosynthetic Efficiency in Agriculture.” Remote Sensing of Environment 81 (2–3): 179–193. doi:10.1016/S0034-4257(01)00342-X.
    • (2002) Remote Sensing of Environment , vol.81 , Issue.2-3 , pp. 179-193
    • Boegh, E.1    Soegaard, H.2    Broge, N.3    Hasager, C.B.4    Jensen, N.O.5    Schelde, K.6    Thomsen, A.7
  • 7
    • 0242459671 scopus 로고    scopus 로고
    • Ground-Based Measurements of Leaf Area Index: A Review of Methods, Instruments and Current Controversies
    • N.J.J.Bréda, 2003. “Ground-Based Measurements of Leaf Area Index: A Review of Methods, Instruments and Current Controversies.” Journal of Experimental Botany 54 (392): 2403–2417. doi:10.1093/jxb/erg263.
    • (2003) Journal of Experimental Botany , vol.54 , Issue.392 , pp. 2403-2417
    • Bréda, N.J.J.1
  • 8
    • 0035478854 scopus 로고    scopus 로고
    • Random Forests
    • L.Breiman, 2001. “Random Forests.” Machine Learning 45 (1): 5–32. doi:10.1023/A:1010933404324.
    • (2001) Machine Learning , vol.45 , Issue.1 , pp. 5-32
    • Breiman, L.1
  • 9
    • 0036259365 scopus 로고    scopus 로고
    • Deriving Green Crop Area Index and Canopy Chlorophyll Density of Winter Wheat from Spectral Reflectance Data
    • N.H.Broge,, and J.V.Mortensen. 2002. “Deriving Green Crop Area Index and Canopy Chlorophyll Density of Winter Wheat from Spectral Reflectance Data.” Remote Sensing of Environment 81 (1): 45–57. doi:10.1016/S0034-4257(01)00332-7.
    • (2002) Remote Sensing of Environment , vol.81 , Issue.1 , pp. 45-57
    • Broge, N.H.1    Mortensen, J.V.2
  • 10
    • 0028669029 scopus 로고
    • Ratios of Leaf Reflectances in Narrow Wavebands as Indicators of Plant Stress
    • G.A.Carter, 1994. “Ratios of Leaf Reflectances in Narrow Wavebands as Indicators of Plant Stress.” International Journal of Remote Sensing 15 (3): 697–703. doi:10.1080/01431169408954109.
    • (1994) International Journal of Remote Sensing , vol.15 , Issue.3
    • Carter, G.A.1
  • 12
    • 0027069057 scopus 로고
    • Defining Leaf-Area Index for Non-Flat Leaves
    • J.M.Chen,, and T.A.Black. 1992. “Defining Leaf-Area Index for Non-Flat Leaves.” Plant, Cell & Environment 15 (4): 421–429. doi:10.1111/pce.1992.15.issue-4.
    • (1992) Plant, Cell & Environment , vol.15 , Issue.4 , pp. 421-429
    • Chen, J.M.1    Black, T.A.2
  • 13
    • 0037380004 scopus 로고    scopus 로고
    • An Improved Strategy for Regression of Biophysical Variables and Landsat ETM+ Data
    • W.B.Cohen,, T.K.Maiersperger, S.T.Gower, and D.P.Turner. 2003. “An Improved Strategy for Regression of Biophysical Variables and Landsat ETM+ Data.” Remote Sensing of Environment 84 (4): 561–571. doi:10.1016/S0034-4257(02)00173-6.
    • (2003) Remote Sensing of Environment , vol.84 , Issue.4 , pp. 561-571
    • Cohen, W.B.1    Maiersperger, T.K.2    Gower, S.T.3    Turner, D.P.4
  • 14
    • 0036859106 scopus 로고    scopus 로고
    • Information Technology: The Global Key to Precision Agriculture and Sustainability
    • S.Cox, 2002. “Information Technology: The Global Key to Precision Agriculture and Sustainability.” Computers and Electronics in Agriculture 36 (2–3): 93–111. doi:10.1016/S0168-1699(02)00095-9.
    • (2002) Computers and Electronics in Agriculture , vol.36 , Issue.2-3 , pp. 93-111
    • Cox, S.1
  • 15
    • 0028597807 scopus 로고
    • Imaging Spectrometry
    • P.J.Curran, 1994. “Imaging Spectrometry.” Progress in Physical Geography 18 (2): 247–266. doi:10.1177/030913339401800204.
    • (1994) Progress in Physical Geography , vol.18 , Issue.2 , pp. 247-266
    • Curran, P.J.1
  • 17
    • 0026614858 scopus 로고
    • Spectral Estimates of Absorbed Radiation and Phytomass Production in Corn and Soybean Canopies
    • C.S.T.Daughtry,, K.P.Gallo, S.N.Goward, S.D.Prince, and W.P.Kustas. 1992. “Spectral Estimates of Absorbed Radiation and Phytomass Production in Corn and Soybean Canopies.” Remote Sensing of Environment 39 (2): 141–152. doi:10.1016/0034-4257(92)90132-4.
    • (1992) Remote Sensing of Environment , vol.39 , Issue.2 , pp. 141-152
    • Daughtry, C.S.T.1    Gallo, K.P.2    Goward, S.N.3    Prince, S.D.4    Kustas, W.P.5
  • 19
    • 0036323232 scopus 로고    scopus 로고
    • The Potential of Near-Infrared Reflectance Spectroscopy for Soil Analysis: A Case Study from the Riverine Plain of South-Eastern Australia
    • B.W.Dunn,, H.G.Beecher, G.D.Batten, and S.Ciavarella. 2002. “The Potential of Near-Infrared Reflectance Spectroscopy for Soil Analysis: A Case Study from the Riverine Plain of South-Eastern Australia.” Australian Journal of Experimental Agriculture 42 (5): 607–614. doi:10.1071/EA01172.
    • (2002) Australian Journal of Experimental Agriculture , vol.42 , Issue.5 , pp. 607-614
    • Dunn, B.W.1    Beecher, H.G.2    Batten, G.D.3    Ciavarella, S.4
  • 20
    • 84950461478 scopus 로고
    • Estimating the Error Rate of a Prediction Rule: Improvement on Cross-Validation
    • B.Efron, 1983. “Estimating the Error Rate of a Prediction Rule: Improvement on Cross-Validation.” Journal of the American Statistical Association 78 (382): 316–331. doi:10.1080/01621459.1983.10477973.
    • (1983) Journal of the American Statistical Association , vol.78 , Issue.382 , pp. 316-331
    • Efron, B.1
  • 21
    • 0038035668 scopus 로고    scopus 로고
    • Retrieving Leaf Area Index Using a Genetic Algorithm with a Canopy Radiative Transfer Model
    • H.L.Fang,, S.L.Liang, and A.Kuusk. 2003. “Retrieving Leaf Area Index Using a Genetic Algorithm with a Canopy Radiative Transfer Model.” Remote Sensing of Environment 85 (3): 257–270. doi:10.1016/S0034-4257(03)00005-1.
    • (2003) Remote Sensing of Environment , vol.85 , Issue.3 , pp. 257-270
    • Fang, H.L.1    Liang, S.L.2    Kuusk, A.3
  • 22
    • 84856077178 scopus 로고    scopus 로고
    • Mapping Leaf Area Index Using Spatial, Spectral and Temporal Information from Multiple Sensors
    • J.Gray,, and C.Song. 2012. “Mapping Leaf Area Index Using Spatial, Spectral and Temporal Information from Multiple Sensors.” Remote Sensing of Environment 119: 173–183. doi:10.1016/j.rse.2011.12.016.
    • (2012) Remote Sensing of Environment , vol.119 , pp. 173-183
    • Gray, J.1    Song, C.2
  • 23
    • 1842431418 scopus 로고    scopus 로고
    • Hyperspectral Vegetation Indices and Novel Algorithms for Predicting Green LAI of Crop Canopies: Modeling and Validation in the Context of Precision Agriculture
    • D.Haboudane,, J.Millera, E.Patteyc, P.Zarco-Tejada, and I.Strachan. 2004. “Hyperspectral Vegetation Indices and Novel Algorithms for Predicting Green LAI of Crop Canopies: Modeling and Validation in the Context of Precision Agriculture.” Remote Sensing of Environment 90 (3): 337–352. doi:10.1016/j.rse.2003.12.013.
    • (2004) Remote Sensing of Environment , vol.90 , Issue.3 , pp. 337-352
    • Haboudane, D.1    Millera, J.2    Patteyc, E.3    Zarco-Tejada, P.4    Strachan, I.5
  • 24
    • 0141792270 scopus 로고    scopus 로고
    • Reflectance Measurement of Canopy Biomass and Nitrogen Status in Wheat Crops Using Normalized Difference Vegetation Indices and Partial Least Squares Regression
    • P.M.Hansen,, and J.K.Schjoerring. 2003. “Reflectance Measurement of Canopy Biomass and Nitrogen Status in Wheat Crops Using Normalized Difference Vegetation Indices and Partial Least Squares Regression.” Remote Sensing of Environment 86 (4): 542–553. doi:10.1016/S0034-4257(03)00131-7.
    • (2003) Remote Sensing of Environment , vol.86 , Issue.4 , pp. 542-553
    • Hansen, P.M.1    Schjoerring, J.K.2
  • 27
    • 0028982382 scopus 로고
    • Extraction of Vegetation Biophysical Parameters by Inversion of the PROSPECT + SAIL Models on Sugar Beet Canopy Reflectance Data. Application to TM and AVIRIS Sensors
    • S.Jacquemoud,, F.Baret, B.Andrieu, F.M.Danson, and K.Jaggard. 1995. “Extraction of Vegetation Biophysical Parameters by Inversion of the PROSPECT + SAIL Models on Sugar Beet Canopy Reflectance Data. Application to TM and AVIRIS Sensors.” Remote Sensing of Environment 52 (3): 163–172. doi:10.1016/0034-4257(95)00018-V.
    • (1995) Remote Sensing of Environment , vol.52 , Issue.3 , pp. 163-172
    • Jacquemoud, S.1    Baret, F.2    Andrieu, B.3    Danson, F.M.4    Jaggard, K.5
  • 29
    • 84879518968 scopus 로고    scopus 로고
    • Spectroscopy and Hyperspectral Imagery for Monitoring Summer Barley
    • T.Jarmer, 2013. “Spectroscopy and Hyperspectral Imagery for Monitoring Summer Barley.” International Journal of Remote Sensing 34 (17): 6067–6078. doi:10.1080/01431161.2013.793871.
    • (2013) International Journal of Remote Sensing , vol.34 , Issue.17 , pp. 6067-6078
    • Jarmer, T.1
  • 31
    • 77951780947 scopus 로고    scopus 로고
    • Application of Support Vector Machine Technology for the Estimation of Crop Biophysical Parameters Using Aerial Hyperspectral Observations
    • Y.Karimi,, S.O.Prasher, A.Madani, and S.Kim. 2008. “Application of Support Vector Machine Technology for the Estimation of Crop Biophysical Parameters Using Aerial Hyperspectral Observations.” Canadian Biosystems Engineering 50: 713–720.
    • (2008) Canadian Biosystems Engineering , vol.50 , pp. 713-720
    • Karimi, Y.1    Prasher, S.O.2    Madani, A.3    Kim, S.4
  • 33
    • 84943409580 scopus 로고    scopus 로고
    • Evaluating Multispectral and Hyperspectral Satellite Remote Sensing Data for Estimating Winter Wheat Growth Parameters at Regional Scale in the North China Plain
    • W.Koppe,, F.Li, M.L.Gnyp, Y.Miao, L.Jia, X.Chen, F.Zhang, and G.Bareth. 2010. “Evaluating Multispectral and Hyperspectral Satellite Remote Sensing Data for Estimating Winter Wheat Growth Parameters at Regional Scale in the North China Plain.” Photogrammetry, Remote Sensing and Geoinformation Science 2010 (3): 171–182.
    • (2010) Photogrammetry, Remote Sensing and Geoinformation Science , vol.2010 , Issue.3 , pp. 171-182
    • Koppe, W.1    Li, F.2    Gnyp, M.L.3    Miao, Y.4    Jia, L.5    Chen, X.6    Zhang, F.7    Bareth, G.8
  • 34
    • 2942739367 scopus 로고    scopus 로고
    • Hyperspectral versus Multispectral Data for Estimating Leaf Area Index in Four Different Biomes
    • K.Lee,, W.B.Cohen, R.E.Kennedy, T.K.Maiersperger, and S.T.Gower. 2004. “Hyperspectral versus Multispectral Data for Estimating Leaf Area Index in Four Different Biomes.” Remote Sensing of Environment 91 (3–4): 508–520. doi:10.1016/j.rse.2004.04.010.
    • (2004) Remote Sensing of Environment , vol.91 , Issue.3-4 , pp. 508-520
    • Lee, K.1    Cohen, W.B.2    Kennedy, R.E.3    Maiersperger, T.K.4    Gower, S.T.5
  • 35
    • 85140937159 scopus 로고    scopus 로고
    • Application in Analysis of Soils
    • Roberts C.A., Workman Jr. J., Reeves, III J.B., (eds), Madison, WI: American Society of Agronomy-Crop Science Society of America-Soil Science Society of America
    • D.F.Malley,, P.D.Martin, and E.Ben-Dor. 2004. “Application in Analysis of Soils.” In Near-Infrared Spectroscopy in Agriculture, edited by C.A.Roberts, J.WorkmanJr, and J.B.Reeves, III, 729–783. Madison, WI: American Society of Agronomy-Crop Science Society of America-Soil Science Society of America.
    • (2004) Near-Infrared Spectroscopy in Agriculture , pp. 729-783
    • Malley, D.F.1    Martin, P.D.2    Ben-Dor, E.3
  • 36
    • 33846829987 scopus 로고    scopus 로고
    • The Pls Package: Principal Component and Partial Least Squares Regression in R
    • B.-H.Mevik,, and R.Wehrens. 2007. “The Pls Package: Principal Component and Partial Least Squares Regression in R.” Journal of Statistical Software 18 (2): 1–24.
    • (2007) Journal of Statistical Software , vol.18 , Issue.2 , pp. 1-24
    • Mevik, B.-H.1    Wehrens, R.2
  • 37
    • 0029415659 scopus 로고
    • Combining Remote Sensing and Modeling for Estimating Surface Evaporation and Biomass Production
    • M.S.Moran,, S.J.Maas, and P.J.PinterJr. 1995. “Combining Remote Sensing and Modeling for Estimating Surface Evaporation and Biomass Production.” Remote Sensing Reviews 12 (3–4): 335–353. doi:10.1080/02757259509532290.
    • (1995) Remote Sensing Reviews , vol.12 , Issue.3-4 , pp. 335-353
    • Moran, M.S.1    Maas, S.J.2    Pinter, P.J.3
  • 38
    • 84887105216 scopus 로고    scopus 로고
    • Twenty Five Years of Remote Sensing in Precision Agriculture: Key Advances and Remaining Knowledge Gaps
    • D.J.Mulla, 2013. “Twenty Five Years of Remote Sensing in Precision Agriculture: Key Advances and Remaining Knowledge Gaps.” Biosystems Engineering 114 (4): 358–371. doi:10.1016/j.biosystemseng.2012.08.009.
    • (2013) Biosystems Engineering , vol.114 , Issue.4 , pp. 358-371
    • Mulla, D.J.1
  • 39
    • 33645971316 scopus 로고    scopus 로고
    • Assessment of Rice Leaf Growth and Nitrogen Status by Hyperspectral Canopy Reflectance and Partial Least Square Regression
    • H.T.Nguyen,, and B.-W.Lee. 2006. “Assessment of Rice Leaf Growth and Nitrogen Status by Hyperspectral Canopy Reflectance and Partial Least Square Regression.” European Journal of Agronomy 24 (4): 349–356. doi:10.1016/j.eja.2006.01.001.
    • (2006) European Journal of Agronomy , vol.24 , Issue.4 , pp. 349-356
    • Nguyen, H.T.1    Lee, B.-W.2
  • 43
    • 76049083444 scopus 로고    scopus 로고
    • Quantification of Live Aboveground Forest Biomass Dynamics with Landsat Time-Series and Field Inventory Data: A Comparison of Empirical Modeling Approaches
    • S.L.Powell,, W.B.Cohen, S.P.Healey, R.E.Kennedy, G.G.Moisen, K.B.Pierce, and J.L.Ohmann. 2010. “Quantification of Live Aboveground Forest Biomass Dynamics with Landsat Time-Series and Field Inventory Data: A Comparison of Empirical Modeling Approaches.” Remote Sensing of Environment 114 (5): 1053–1068. doi:10.1016/j.rse.2009.12.018.
    • (2010) Remote Sensing of Environment , vol.114 , Issue.5 , pp. 1053-1068
    • Powell, S.L.1    Cohen, W.B.2    Healey, S.P.3    Kennedy, R.E.4    Moisen, G.G.5    Pierce, K.B.6    Ohmann, J.L.7
  • 44
    • 84855703310 scopus 로고    scopus 로고
    • Comparing Canonical Correlation Analysis with Partial Least Squares Regression in Estimating Forest Leaf Area Index with Multitemporal Landsat TM Imagery
    • R.Pu, 2012. “Comparing Canonical Correlation Analysis with Partial Least Squares Regression in Estimating Forest Leaf Area Index with Multitemporal Landsat TM Imagery.” GIScience & Remote Sensing 49 (1): 92–116. doi:10.2747/1548-1603.49.1.92.
    • (2012) GIScience & Remote Sensing , vol.49 , Issue.1 , pp. 92-116
    • Pu, R.1
  • 46
    • 84984286248 scopus 로고
    • A Pls Kernel Algorithm for Data Sets with Many Variables and Fewer Objects. Part 1: Theory and Algorithm
    • S.Rännar,, P.Geladi, F.Lidgren, and S.Wold. 1994. “A Pls Kernel Algorithm for Data Sets with Many Variables and Fewer Objects. Part 1: Theory and Algorithm.” Journal of Chemometrics 8 (2): 111–124. doi:10.1002/cem.1180080204.
    • (1994) Journal of Chemometrics , vol.8 , Issue.2 , pp. 111-124
    • Rännar, S.1    Geladi, P.2    Lidgren, F.3    Wold, S.4
  • 47
    • 0002261150 scopus 로고
    • A Review and Integrating Analysis of Spatially-Variable Control of Crop Production
    • J.K.Schueller, 1992. “A Review and Integrating Analysis of Spatially-Variable Control of Crop Production.” Fertilizer Research 33 (1): 1–34. doi:10.1007/BF01058007.
    • (1992) Fertilizer Research , vol.33 , Issue.1 , pp. 1-34
    • Schueller, J.K.1
  • 49
    • 84952126648 scopus 로고
    • Validation of Regression Models: Methods and Examples
    • R.D.Snee, 1977. “Validation of Regression Models: Methods and Examples.” Technometrics 19 (4): 415–428. doi:10.1080/00401706.1977.10489581.
    • (1977) Technometrics , vol.19 , Issue.4 , pp. 415-428
    • Snee, R.D.1
  • 51
    • 0033970477 scopus 로고    scopus 로고
    • Hyperspectral Vegetation Indices and Their Relationships with Agricultural Crop Characteristics
    • P.S.Thenkabail,, R.B.Smith, and E.De-Pauw. 2000. “Hyperspectral Vegetation Indices and Their Relationships with Agricultural Crop Characteristics.” Remote Sensing of Environment 71 (2): 158–182. doi:10.1016/S0034-4257(99)00067-X.
    • (2000) Remote Sensing of Environment , vol.71 , Issue.2 , pp. 158-182
    • Thenkabail, P.S.1    Smith, R.B.2    De-Pauw, E.3
  • 52
  • 54
    • 81355146796 scopus 로고    scopus 로고
    • Comparison of Different Vegetation Indices for the Remote Assessment of Green Leaf Area Index of Crops
    • A.Viña,, A.A.Gitelson, A.L.Nguy-Robertson, and Y.Peng. 2011. “Comparison of Different Vegetation Indices for the Remote Assessment of Green Leaf Area Index of Crops.” Remote Sensing of Environment 115 (12): 3468–3478. doi:10.1016/j.rse.2011.08.010.
    • (2011) Remote Sensing of Environment , vol.115 , Issue.12 , pp. 3468-3478
    • Viña, A.1    Gitelson, A.A.2    Nguy-Robertson, A.L.3    Peng, Y.4
  • 55
    • 37249041897 scopus 로고    scopus 로고
    • Estimating Structural and Biochemical Parameters for Grassland from Spectroradiometer Data by Radiative Transfer Modelling (PROSPECT + SAIL)
    • M.Vohland,, and T.Jarmer. 2008. “Estimating Structural and Biochemical Parameters for Grassland from Spectroradiometer Data by Radiative Transfer Modelling (PROSPECT + SAIL).” International Journal of Remote Sensing 29 (1): 191–209. doi:10.1080/01431160701268947.
    • (2008) International Journal of Remote Sensing , vol.29 , Issue.1 , pp. 191-209
    • Vohland, M.1    Jarmer, T.2
  • 56
    • 84874772599 scopus 로고    scopus 로고
    • Estimation of Leaf Area Index Using DEIMOS-1 Data: Application and Transferability of a Semi-Empirical Relationship between Two Agricultural Areas
    • F.Vuolo,, N.Neugebauer, S.F.Bolognesi, C.Atzberger, and G.D’Urso. 2013. “Estimation of Leaf Area Index Using DEIMOS-1 Data: Application and Transferability of a Semi-Empirical Relationship between Two Agricultural Areas.” Remote Sensing 5 (3): 1274–1291. doi:10.3390/rs5031274.
    • (2013) Remote Sensing , vol.5 , Issue.3 , pp. 1274-1291
    • Vuolo, F.1    Neugebauer, N.2    Bolognesi, S.F.3    Atzberger, C.4    D’Urso, G.5
  • 57
    • 79955788941 scopus 로고    scopus 로고
    • A Comparison of Three Methods for Estimating Leaf Area Index of Paddy Rice from Optimal Hyperspectral Bands
    • F.-M.Wang,, J.-F.Huang, and Z.-H.Lou. 2011. “A Comparison of Three Methods for Estimating Leaf Area Index of Paddy Rice from Optimal Hyperspectral Bands.” PrecisionAgriculture 12 (3): 439–447. doi:10.1007/s11119-010-9185-2.
    • (2011) PrecisionAgriculture , vol.12 , Issue.3 , pp. 439-447
    • Wang, F.-M.1    Huang, J.-F.2    Lou, Z.-H.3
  • 58
    • 77956983887 scopus 로고
    • Comparative Physiological Studies in the Growth of Field Crops. I. Variation in Net Assimilation Rate and Leaf Area between Species and Varieties, and within and between Years
    • D.J.Watson, 1947. “Comparative Physiological Studies in the Growth of Field Crops. I. Variation in Net Assimilation Rate and Leaf Area between Species and Varieties, and within and between Years.” Annals of Botany 11 (41): 41–76.
    • (1947) Annals of Botany , vol.11 , Issue.41 , pp. 41-76
    • Watson, D.J.1
  • 59
    • 0034106848 scopus 로고    scopus 로고
    • Investigation of a Model Inversion Technique to Estimate Canopy Biophysical Variables from Spectral and Directional Data
    • M.Weiss,, F.Baret, R.B.Myneni, A.Pragnère, and Y.Knyazikhin. 2000. “Investigation of a Model Inversion Technique to Estimate Canopy Biophysical Variables from Spectral and Directional Data.” Agronomie 20 (1): 3–22. doi:10.1051/agro:2000105.
    • (2000) Agronomie , vol.20 , Issue.1 , pp. 3-22
    • Weiss, M.1    Baret, F.2    Myneni, R.B.3    Pragnère, A.4    Knyazikhin, Y.5
  • 60
    • 0033841491 scopus 로고    scopus 로고
    • Comparison of Three Leaf Area Index Meters in a Corn Canopy
    • W.Wilhelm,, K.Ruwe, and M.R.Schlemmer. 2000. “Comparison of Three Leaf Area Index Meters in a Corn Canopy.” Crop Science 40 (4): 1179–1183. doi:10.2135/cropsci2000.4041179x.
    • (2000) Crop Science , vol.40 , Issue.4 , pp. 1179-1183
    • Wilhelm, W.1    Ruwe, K.2    Schlemmer, M.R.3
  • 61
    • 0001392735 scopus 로고    scopus 로고
    • Implementation of Near-Infrared Technology
    • Williams P., Norris K., (eds), St. Paul: American Association of Cereal Chemists
    • P.Williams, 2011. “Implementation of Near-Infrared Technology.” In Near-Infrared Technology in the Agricultural and Food Industries, edited by P.Williams and K.Norris, 145–169. St. Paul: American Association of Cereal Chemists.
    • (2011) Near-Infrared Technology in the Agricultural and Food Industries , pp. 145-169
    • Williams, P.1
  • 63
    • 85125870948 scopus 로고    scopus 로고
    • Retrieving Leaf Area Index (LAI) Using Remote Sensing: Theories, Methods and Sensors
    • G.Zheng,, and L.M.Moskal. 2009. “Retrieving Leaf Area Index (LAI) Using Remote Sensing: Theories, Methods and Sensors.” Sensors 9 (4): 2719–2745. doi:10.3390/s90402719.
    • (2009) Sensors , vol.9 , Issue.4 , pp. 2719-2745
    • Zheng, G.1    Moskal, L.M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.