메뉴 건너뛰기




Volumn 29, Issue 8, 2015, Pages 1993-2002

Expression of Concern: Potential of adaptive neuro-fuzzy inference system for evaluation of drought indices (Stochastic Environmental Research and Risk Assessment, (2015), 29, 8, (1993-2002), 10.1007/s00477-015-1056-y);Potential of adaptive neuro-fuzzy inference system for evaluation of drought indices

Author keywords

Adaptive neuro fuzzy system; ANFIS index; Drought indices; Estimation

Indexed keywords

DROUGHT; ESTIMATION; FUZZY NEURAL NETWORKS; FUZZY SYSTEMS; MEAN SQUARE ERROR;

EID: 84943201350     PISSN: 14363240     EISSN: 14363259     Source Type: Journal    
DOI: 10.1007/s00477-019-01676-0     Document Type: Erratum
Times cited : (21)

References (34)
  • 1
    • 84877012671 scopus 로고    scopus 로고
    • Prediction of drought in dry lands through feed forward artificial neural network abilities
    • Abarghouei HB, Kousari MR, Zarch MAA (2013) Prediction of drought in dry lands through feed forward artificial neural network abilities. Arab J Geosci 6:1417–1433
    • (2013) Arab J Geosci , vol.6 , pp. 1417-1433
    • Abarghouei, H.B.1    Kousari, M.R.2    Zarch, M.A.A.3
  • 2
    • 0000097885 scopus 로고    scopus 로고
    • Crop evapotranspiration. Guidelines for computing crop water requirements. FAO Irrigation and Drainage Paper 56
    • Allen RG, Pereira LS, Raes D, Smith M (1998) Crop evapotranspiration. Guidelines for computing crop water requirements. FAO Irrigation and Drainage Paper 56, Roma
    • (1998) Roma
    • Allen, R.G.1    Pereira, L.S.2    Raes, D.3    Smith, M.4
  • 3
    • 71149094442 scopus 로고    scopus 로고
    • Adaptive neuro-fuzzy inference system for drought forecasting
    • Bacanli UG, Firat M, Dikbas F (2009) Adaptive neuro-fuzzy inference system for drought forecasting. Stoch Environ Res Risk Assess 23:1143–1154
    • (2009) Stoch Environ Res Risk Assess , vol.23 , pp. 1143-1154
    • Bacanli, U.G.1    Firat, M.2    Dikbas, F.3
  • 4
    • 84890235995 scopus 로고    scopus 로고
    • Long-term SPI drought forecasting in the Awash River Basin in Ethiopia using wavelet neural network and wavelet support vector regression models
    • Belayneh A, Adamowski J, Khalil B, Ozga-Zielinski B (2014) Long-term SPI drought forecasting in the Awash River Basin in Ethiopia using wavelet neural network and wavelet support vector regression models. J Hydrol 508:418–429
    • (2014) J Hydrol , vol.508 , pp. 418-429
    • Belayneh, A.1    Adamowski, J.2    Khalil, B.3    Ozga-Zielinski, B.4
  • 5
    • 84943198168 scopus 로고    scopus 로고
    • A review of climate change 2014: impacts, adaptation, and vulnerability and climate change 2014: mitigation of climate change
    • Birch EL (2014) A review of climate change 2014: impacts, adaptation, and vulnerability and climate change 2014: mitigation of climate change. J Am Plan Assoc 80(2):184–185
    • (2014) J Am Plan Assoc , vol.80 , Issue.2 , pp. 184-185
    • Birch, E.L.1
  • 6
    • 0033190381 scopus 로고    scopus 로고
    • Objective quantification of drought severity and duration
    • Byun H, Wilhite DA (1999) Objective quantification of drought severity and duration. J Clim 12:2747–2756
    • (1999) J Clim , vol.12 , pp. 2747-2756
    • Byun, H.1    Wilhite, D.A.2
  • 7
    • 0019144934 scopus 로고
    • On the statistical characteristics of drought events
    • Dracup JA, Lee KS, Paulson EN Jr (1980) On the statistical characteristics of drought events. Water Resour Res 16(2):289–296
    • (1980) Water Resour Res , vol.16 , Issue.2 , pp. 289-296
    • Dracup, J.A.1    Lee, K.S.2    Paulson, E.N.3
  • 8
    • 84878466437 scopus 로고    scopus 로고
    • Analysis of precipitation and drought data in Serbia over the period 1980–2010
    • Gocic M, Trajkovic S (2013) Analysis of precipitation and drought data in Serbia over the period 1980–2010. J Hydrol 494:32–42
    • (2013) J Hydrol , vol.494 , pp. 32-42
    • Gocic, M.1    Trajkovic, S.2
  • 9
    • 84891650553 scopus 로고    scopus 로고
    • Spatiotemporal characteristics of drought in Serbia
    • Gocic M, Trajkovic S (2014a) Spatiotemporal characteristics of drought in Serbia. J Hydrol 510:110–123
    • (2014) J Hydrol , vol.510 , pp. 110-123
    • Gocic, M.1    Trajkovic, S.2
  • 10
    • 84903584388 scopus 로고    scopus 로고
    • Drought characterisation based on water surplus variability index
    • Gocic M, Trajkovic S (2014b) Drought characterisation based on water surplus variability index. Water Resour Manag 28(10):3179–3191
    • (2014) Water Resour Manag , vol.28 , Issue.10 , pp. 3179-3191
    • Gocic, M.1    Trajkovic, S.2
  • 11
    • 84921498387 scopus 로고    scopus 로고
    • Water surplus variability index as an indicator of drought
    • Gocic M, Trajkovic S (2014c) Water surplus variability index as an indicator of drought. J Hydrol Eng. doi:10.1061/(ASCE)HE.1943-5584.0001008
    • (2014) J Hydrol Eng
    • Gocic, M.1    Trajkovic, S.2
  • 12
    • 84928485468 scopus 로고    scopus 로고
    • Uncertainties in assessing hydrological drought using streamflow drought index for the upper Yangtze River basin
    • Hong X, Guo S, Zhou Y, Xiong L (2014) Uncertainties in assessing hydrological drought using streamflow drought index for the upper Yangtze River basin. Stoch Environ Res Risk Assess. doi:10.1007/s00477-014-0949-5
    • (2014) Stoch Environ Res Risk Assess
    • Hong, X.1    Guo, S.2    Zhou, Y.3    Xiong, L.4
  • 13
    • 84939463622 scopus 로고    scopus 로고
    • Uncertainty analysis of SPI calculation and drought assessment based on the application of Bootstrap
    • Hu Y-M, Liang Z-M, Liu Y-W, Wang J, Yao L, Ning Y (2014) Uncertainty analysis of SPI calculation and drought assessment based on the application of Bootstrap. Int J Climatol. doi:10.1002/joc.4091
    • (2014) Int J Climatol
    • Hu, Y.-M.1    Liang, Z.-M.2    Liu, Y.-W.3    Wang, J.4    Yao, L.5    Ning, Y.6
  • 14
    • 0027601884 scopus 로고
    • ANFIS: adaptive-network-based fuzzy inference systems
    • Jang J-SR (1993) ANFIS: adaptive-network-based fuzzy inference systems. IEEE Trans Syst, Man, Cybern 23:665–685
    • (1993) IEEE Trans Syst, Man, Cybern , vol.23 , pp. 665-685
    • Jang, J.-S.R.1
  • 16
    • 84918530431 scopus 로고    scopus 로고
    • Drought assessment and uncertainty analysis for Dapoling basin
    • Liu YW, Wang W, Hu YM, Liang ZM (2014) Drought assessment and uncertainty analysis for Dapoling basin. Nat Hazards 74(3):1613–1627
    • (2014) Nat Hazards , vol.74 , Issue.3 , pp. 1613-1627
    • Liu, Y.W.1    Wang, W.2    Hu, Y.M.3    Liang, Z.M.4
  • 17
    • 84911976740 scopus 로고    scopus 로고
    • Artificial neural networks models for predicting effective drought index: factoring effects of rainfall variability
    • Masinde M (2013) Artificial neural networks models for predicting effective drought index: factoring effects of rainfall variability. Mitig Adapt Strateg Glob Chang. doi:10.1007/s11027-013-9464-0
    • (2013) Mitig Adapt Strateg Glob Chang
    • Masinde, M.1
  • 18
    • 0001895140 scopus 로고
    • The relationship of drought frequency and duration to time scales
    • Jan, Anaheim
    • McKee TB, Doesken NJ, Kleist J (1993) The relationship of drought frequency and duration to time scales. In: 8th Conference on applied climatology, 17–22 Jan, Anaheim, 179–184
    • (1993) 8th Conference on applied climatology , vol.17-22 , pp. 179-184
    • McKee, T.B.1    Doesken, N.J.2    Kleist, J.3
  • 19
    • 0001170158 scopus 로고    scopus 로고
    • Kleist J (1995) Drought monitoring with multiple time scales
    • American Meteorological Society, Boston
    • McKee TB, Doesken NJ, Kleist J (1995) Drought monitoring with multiple time scales. In: 9th Conference on applied climatology, American Meteorological Society, Boston, 233–236
    • 9th Conference on applied climatology , pp. 233-236
    • McKee, T.B.1    Doesken, N.J.2
  • 20
    • 77956191461 scopus 로고    scopus 로고
    • A review of drought concepts
    • Mishra AK, Singh VP (2010) A review of drought concepts. J Hydrol 354(1–2):202–216
    • (2010) J Hydrol , vol.354 , Issue.1-2 , pp. 202-216
    • Mishra, A.K.1    Singh, V.P.2
  • 22
    • 37249024658 scopus 로고    scopus 로고
    • Drought forecasting using artificial neural networks and time series of drought indices
    • Morid S, Smakhtin V, Bagherzadeh K (2007) Drought forecasting using artificial neural networks and time series of drought indices. Int J Climatol 27:2103–2111
    • (2007) Int J Climatol , vol.27 , pp. 2103-2111
    • Morid, S.1    Smakhtin, V.2    Bagherzadeh, K.3
  • 23
    • 80054934193 scopus 로고    scopus 로고
    • Estimating palmer drought severity index using a wavelet fuzzy logic model based on meteorological variables
    • Özger M, Mishra AK, Singh VP (2011) Estimating palmer drought severity index using a wavelet fuzzy logic model based on meteorological variables. Int J Climatol 31:2021–2032
    • (2011) Int J Climatol , vol.31 , pp. 2021-2032
    • Özger, M.1    Mishra, A.K.2    Singh, V.P.3
  • 24
    • 84858322934 scopus 로고    scopus 로고
    • Long lead time drought forecasting using a wavelet and fuzzy logic combination model
    • Özger M, Mishra AK, Singh VP (2012) Long lead time drought forecasting using a wavelet and fuzzy logic combination model. J Hydrometeorol 13:284–297
    • (2012) J Hydrometeorol , vol.13 , pp. 284-297
    • Özger, M.1    Mishra, A.K.2    Singh, V.P.3
  • 26
    • 0033536877 scopus 로고    scopus 로고
    • Application of fuzzy rule-based modeling technique to regional drought
    • Pongracz R, Bogardi I, Duckstein L (1999) Application of fuzzy rule-based modeling technique to regional drought. J Hydrol 224(1999):100–114
    • (1999) J Hydrol , vol.224 , Issue.1999 , pp. 100-114
    • Pongracz, R.1    Bogardi, I.2    Duckstein, L.3
  • 27
    • 45449126257 scopus 로고    scopus 로고
    • Structure identification of fuzzy model
    • Sugeno M, Kang GT (1998) Structure identification of fuzzy model. Fuzzy Sets Syst 28:15–33
    • (1998) Fuzzy Sets Syst , vol.28 , pp. 15-33
    • Sugeno, M.1    Kang, G.T.2
  • 29
    • 0021892282 scopus 로고
    • Fuzzy identification of systems and its applications to modeling and control
    • Takagi T, Sugeno M (1985) Fuzzy identification of systems and its applications to modeling and control. IEEE Trans Syst, Man, Cybern 15:116–132
    • (1985) IEEE Trans Syst, Man, Cybern , vol.15 , pp. 116-132
    • Takagi, T.1    Sugeno, M.2
  • 30
    • 1842419265 scopus 로고    scopus 로고
    • Drought definition: a hydrological perspective
    • Vogt JV, Somma F, (eds), Kluwer Academic Publishers, The Netherlands
    • Tate EL, Gustard A (2000) Drought definition: a hydrological perspective. In: Vogt JV, Somma F (eds) Drought and drought mitigation in Europe. Kluwer Academic Publishers, The Netherlands, pp 23–48
    • (2000) Drought and drought mitigation in Europe , pp. 23-48
    • Tate, E.L.1    Gustard, A.2
  • 31
    • 34247573991 scopus 로고    scopus 로고
    • Regional drought assessment based on the reconnaissance drought index (RDI)
    • Tsakiris G, Pangalou D, Vangelis H (2007) Regional drought assessment based on the reconnaissance drought index (RDI). Water Resour Manag 21:821–833
    • (2007) Water Resour Manag , vol.21 , pp. 821-833
    • Tsakiris, G.1    Pangalou, D.2    Vangelis, H.3
  • 32
    • 77953696347 scopus 로고    scopus 로고
    • A multi-scalar drought index sensitive to global warming: the standardized precipitation evapotranspiration index—SPEI
    • Vicente-Serrano SM, Beguería S, López-Moreno JI (2010) A multi-scalar drought index sensitive to global warming: the standardized precipitation evapotranspiration index—SPEI. J Clim 23:1696–1718
    • (2010) J Clim , vol.23 , pp. 1696-1718
    • Vicente-Serrano, S.M.1    Beguería, S.2    López-Moreno, J.I.3
  • 34
    • 0022195325 scopus 로고
    • Understanding the drought phenomenon: the role of definitions
    • Wilhite DA, Glantz MH (1985) Understanding the drought phenomenon: the role of definitions. Water Int 10(3):111–120
    • (1985) Water Int , vol.10 , Issue.3 , pp. 111-120
    • Wilhite, D.A.1    Glantz, M.H.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.