-
1
-
-
80555157523
-
Cellular pathophysiology of ischemic acute kidney injury
-
Bonventre JV, Yang L: Cellular pathophysiology of ischemic acute kidney injury. J Clin Invest 2011; 121: 4210-4221.
-
(2011)
J Clin Invest
, vol.121
, pp. 4210-4221
-
-
Bonventre, J.V.1
Yang, L.2
-
2
-
-
33744944269
-
Update on mechanisms of ischemic acute kidney injury
-
Devarajan P: Update on mechanisms of ischemic acute kidney injury. J Am Soc Nephrol 2006; 17: 1503-1520.
-
(2006)
J Am Soc Nephrol
, vol.17
, pp. 1503-1520
-
-
Devarajan, P.1
-
3
-
-
34447526131
-
The endothelial cell in ischemic acute kidney injury: Implications for acute and chronic function
-
Basile DP: The endothelial cell in ischemic acute kidney injury: implications for acute and chronic function. Kidney Int 2007; 72: 151-156.
-
(2007)
Kidney Int
, vol.72
, pp. 151-156
-
-
Basile, D.P.1
-
4
-
-
84870580153
-
Autophagy in proximal tubules protects against acute kidney injury
-
Jiang M, Wei Q, Dong G, Komatsu M, Su Y, Dong Z: Autophagy in proximal tubules protects against acute kidney injury. Kidney Int 2012; 82: 1271-1283.
-
(2012)
Kidney Int
, vol.82
, pp. 1271-1283
-
-
Jiang, M.1
Wei, Q.2
Dong, G.3
Komatsu, M.4
Su, Y.5
Dong, Z.6
-
5
-
-
49749120592
-
Autophagy is cytoprotective during cisplatin injury of renal proximal tubular cells
-
Periyasamy-Thandavan S, Jiang M, Wei Q, Smith R, Yin XM, Dong Z: Autophagy is cytoprotective during cisplatin injury of renal proximal tubular cells. Kidney Int 2008; 74: 631-640.
-
(2008)
Kidney Int
, vol.74
, pp. 631-640
-
-
Periyasamy-Thandavan, S.1
Jiang, M.2
Wei, Q.3
Smith, R.4
Yin, X.M.5
Dong, Z.6
-
6
-
-
79955626606
-
Autophagy protects the proximal tubule from degeneration and acute ischemic injury
-
Kimura T, Takabatake Y, Takahashi A, Kaimori JY, Matsui I, Namba T, Kitamura H, Niimura F, Matsusaka T, Soga T, Rakugi H, Isaka Y: Autophagy protects the proximal tubule from degeneration and acute ischemic injury. J Am Soc Nephrol 2011; 22: 902-913.
-
(2011)
J Am Soc Nephrol
, vol.22
, pp. 902-913
-
-
Kimura, T.1
Takabatake, Y.2
Takahashi, A.3
Kaimori, J.Y.4
Matsui, I.5
Namba, T.6
Kitamura, H.7
Niimura, F.8
Matsusaka, T.9
Soga, T.10
Rakugi, H.11
Isaka, Y.12
-
7
-
-
77749264299
-
Autophagy is a renoprotective mechanism during in vitro hypoxia and in vivo ischemia-reperfusion injury
-
Jiang M, Liu K, Luo J, Dong Z: Autophagy is a renoprotective mechanism during in vitro hypoxia and in vivo ischemia-reperfusion injury. Am J Pathol 2010; 176: 1181-1192.
-
(2010)
Am J Pathol
, vol.176
, pp. 1181-1192
-
-
Jiang, M.1
Liu, K.2
Luo, J.3
Dong, Z.4
-
8
-
-
84855996286
-
Autophagy guards against cisplatin-induced acute kidney injury
-
Takahashi A, Kimura T, Takabatake Y, Namba T, Kaimori J, Kitamura H, Matsui I, Niimura F, Matsusaka T, Fujita N, Yoshimori T, Isaka Y, Rakugi H: Autophagy guards against cisplatin-induced acute kidney injury. Am J Pathol 2012; 180: 517-525.
-
(2012)
Am J Pathol
, vol.180
, pp. 517-525
-
-
Takahashi, A.1
Kimura, T.2
Takabatake, Y.3
Namba, T.4
Kaimori, J.5
Kitamura, H.6
Matsui, I.7
Niimura, F.8
Matsusaka, T.9
Fujita, N.10
Yoshimori, T.11
Isaka, Y.12
Rakugi, H.13
-
9
-
-
33144490646
-
A microRNA expression signature of human solid tumors defines cancer gene targets
-
Volinia S, Calin GA, Liu CG, Ambs S, Cimmino A, Petrocca F, Visone R, Iorio M, Roldo C, Ferracin M, Prueitt RL, Yanaihara N, Lanza G, Scarpa A, Vecchione A, Negrini M, Harris CC, Croce CM: A microRNA expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci U S A 2006; 103: 2257-2261.
-
(2006)
Proc Natl Acad Sci U S A
, vol.103
, pp. 2257-2261
-
-
Volinia, S.1
Calin, G.A.2
Liu, C.G.3
Ambs, S.4
Cimmino, A.5
Petrocca, F.6
Visone, R.7
Iorio, M.8
Roldo, C.9
Ferracin, M.10
Prueitt, R.L.11
Yanaihara, N.12
Lanza, G.13
Scarpa, A.14
Vecchione, A.15
Negrini, M.16
Harris, C.C.17
Croce, C.M.18
-
10
-
-
3042767202
-
MicroRNAs: Small RNAs with a big role in gene regulation
-
He L, Hannon GJ: MicroRNAs: small RNAs with a big role in gene regulation. Nat Rev Genet 2004; 5: 522-531.
-
(2004)
Nat Rev Genet
, vol.5
, pp. 522-531
-
-
He, L.1
Hannon, G.J.2
-
11
-
-
78951477589
-
MicroRNA-34a is a potent tumor suppressor molecule in vivo in neuroblastoma
-
Tivnan A, Tracey L, Buckley PG, Alcock LC, Davidoff AM, Stallings RL: MicroRNA-34a is a potent tumor suppressor molecule in vivo in neuroblastoma. BMC Cancer 2011; 11: 33.
-
(2011)
BMC Cancer
, vol.11
, pp. 33
-
-
Tivnan, A.1
Tracey, L.2
Buckley, P.G.3
Alcock, L.C.4
Davidoff, A.M.5
Stallings, R.L.6
-
12
-
-
34250851115
-
A microRNA component of the p53 tumour suppressor network
-
He L, He X, Lim LP, de Stanchina E, Xuan Z, Liang Y, Xue W, Zender L, Magnus J, Ridzon D, Jackson AL, Linsley PS, Chen C, Lowe SW, Cleary MA, Hannon GJ: A microRNA component of the p53 tumour suppressor network. Nature 2007; 447: 1130-1134.
-
(2007)
Nature
, vol.447
, pp. 1130-1134
-
-
He, L.1
He, X.2
Lim, L.P.3
De Stanchina, E.4
Xuan, Z.5
Liang, Y.6
Xue, W.7
Zender, L.8
Magnus, J.9
Ridzon, D.10
Jackson, A.L.11
Linsley, P.S.12
Chen, C.13
Lowe, S.W.14
Cleary, M.A.15
Hannon, G.J.16
-
13
-
-
54449092239
-
Effects of miR-34a on cell growth and chemoresistance in prostate cancer PC3 cells
-
Fujita Y, Kojima K, Hamada N, Ohhashi R, Akao Y, Nozawa Y, Deguchi T, Ito M: Effects of miR-34a on cell growth and chemoresistance in prostate cancer PC3 cells. Biochem Biophys Res Commun 2008; 377: 114-119.
-
(2008)
Biochem Biophys Res Commun
, vol.377
, pp. 114-119
-
-
Fujita, Y.1
Kojima, K.2
Hamada, N.3
Ohhashi, R.4
Akao, Y.5
Nozawa, Y.6
Deguchi, T.7
Ito, M.8
-
14
-
-
84899648063
-
MiR-34a modulates angiotensin II-induced myocardial hypertrophy by direct inhibition of ATG9A expression and autophagic activity
-
Huang J, Sun W, Huang H, Ye J, Pan W, Zhong Y, Cheng C, You X, Liu B, Xiong L, Liu S: MiR-34a modulates angiotensin II-induced myocardial hypertrophy by direct inhibition of ATG9A expression and autophagic activity. PLoS One 2014; 9:e94382.
-
(2014)
PLoS One
, vol.9
, pp. e94382
-
-
Huang, J.1
Sun, W.2
Huang, H.3
Ye, J.4
Pan, W.5
Zhong, Y.6
Cheng, C.7
You, X.8
Liu, B.9
Xiong, L.10
Liu, S.11
-
15
-
-
84872616169
-
MiR-34 modulates caenorhabditis elegans lifespan via repressing the autophagy gene ATG9
-
Yang J, Chen D, He Y, Meléndez A, Feng Z, Hong Q, Bai X, Li Q, Cai G, Wang J, Chen X: MiR-34 modulates caenorhabditis elegans lifespan via repressing the autophagy gene ATG9. Age (Dordr) 2013; 35: 11-22.
-
(2013)
Age (Dordr)
, vol.35
, pp. 11-22
-
-
Yang, J.1
Chen, D.2
He, Y.3
Meléndez, A.4
Feng, Z.5
Hong, Q.6
Bai, X.7
Li, Q.8
Cai, G.9
Wang, J.10
Chen, X.11
-
16
-
-
17344392308
-
A new mathematical model for relative quantification in real-time RT-PCR
-
Pfaffl MW: A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 2001; 29:e45.
-
(2001)
Nucleic Acids Res
, vol.29
, pp. e45
-
-
Pfaffl, M.W.1
-
17
-
-
74949093068
-
Autophagy and protein kinase C are required for cardioprotection by sulfaphenazole
-
Huang C, Liu W, Perry CN, Yitzhaki S, Lee Y, Yuan H, Tsukada YT, Hamacher-Brady A, Mentzer RM Jr, Gottlieb RA: Autophagy and protein kinase C are required for cardioprotection by sulfaphenazole. Am J Physiol Heart Circ Physiol 2010; 298:H570-H579.
-
(2010)
Am J Physiol Heart Circ Physiol
, vol.298
, pp. H570-H579
-
-
Huang, C.1
Liu, W.2
Perry, C.N.3
Yitzhaki, S.4
Lee, Y.5
Yuan, H.6
Tsukada, Y.T.7
Hamacher-Brady, A.8
Mentzer, R.M.9
Gottlieb, R.A.10
-
18
-
-
27944504351
-
P62/SQSTM1 forms protein aggregates degraded by autophagy and has a protective effect on huntingtin-induced cell death
-
Bjørkøy G, Lamark T, Brech A, Outzen H, Perander M, Overvatn A, Stenmark H, Johansen T: P62/SQSTM1 forms protein aggregates degraded by autophagy and has a protective effect on huntingtin-induced cell death. J Cell Biol 2005; 171: 603-614.
-
(2005)
J Cell Biol
, vol.171
, pp. 603-614
-
-
Bjørkøy, G.1
Lamark, T.2
Brech, A.3
Outzen, H.4
Perander, M.5
Overvatn, A.6
Stenmark, H.7
Johansen, T.8
-
19
-
-
59249105964
-
Monitoring autophagic degradation of p62/SQSTM1
-
Bjørkøy G, Lamark T, Pankiv S, Øvervatn A, Brech A, Johansen T: Monitoring autophagic degradation of p62/SQSTM1. Methods Enzymol 2009; 452: 181-197.
-
(2009)
Methods Enzymol
, vol.452
, pp. 181-197
-
-
Bjørkøy, G.1
Lamark, T.2
Pankiv, S.3
Øvervatn, A.4
Brech, A.5
Johansen, T.6
-
20
-
-
84894426170
-
Autophagy activation reduces renal tubular injury induced by urinary proteins
-
Liu WJ, Luo MN, Tan J, Chen W, Huang LZ, Yang C, Pan Q, Li B, Liu HF: Autophagy activation reduces renal tubular injury induced by urinary proteins. Autophagy 2014; 10: 243-256.
-
(2014)
Autophagy
, vol.10
, pp. 243-256
-
-
Liu, W.J.1
Luo, M.N.2
Tan, J.3
Chen, W.4
Huang, L.Z.5
Yang, C.6
Pan, Q.7
Li, B.8
Liu, H.F.9
-
21
-
-
84868627011
-
MicroRNA regulation of autophagy
-
Frankel LB, Lund AH: MicroRNA regulation of autophagy. Carcinogenesis 2012; 33: 2018-2025.
-
(2012)
Carcinogenesis
, vol.33
, pp. 2018-2025
-
-
Frankel, L.B.1
Lund, A.H.2
-
22
-
-
81255143302
-
MicroRNA-101 is a potent inhibitor of autophagy
-
Frankel LB, Wen J, Lees M, Høyer-Hansen M, Farkas T, Krogh A, Jäättelä M, Lund AH: MicroRNA-101 is a potent inhibitor of autophagy. EMBO J 2011; 30: 4628-4641.
-
(2011)
EMBO J
, vol.30
, pp. 4628-4641
-
-
Frankel, L.B.1
Wen, J.2
Lees, M.3
Høyer-Hansen, M.4
Farkas, T.5
Krogh, A.6
Jäättelä, M.7
Lund, A.H.8
-
23
-
-
84867009927
-
The miRNA-212/132 family regulates both cardiac hypertrophy and cardiomyocyte autophagy
-
Ucar A, Gupta SK, Fiedler J, Erikci E, Kardasinski M, Batkai S, Dangwal S, Kumarswamy R, Bang C, Holzmann A, Remke J, Caprio M, Jentzsch C, Engelhardt S, Geisendorf S, Glas C, Hofmann TG, Nessling M, Richter K, Schiffer M, Carrier L, Napp LC, Bauersachs J, Chowdhury K, Thum T: The miRNA-212/132 family regulates both cardiac hypertrophy and cardiomyocyte autophagy. Nat Commun 2012; 3: 1078.
-
(2012)
Nat Commun
, vol.3
, pp. 1078
-
-
Ucar, A.1
Gupta, S.K.2
Fiedler, J.3
Erikci, E.4
Kardasinski, M.5
Batkai, S.6
Dangwal, S.7
Kumarswamy, R.8
Bang, C.9
Holzmann, A.10
Remke, J.11
Caprio, M.12
Jentzsch, C.13
Engelhardt, S.14
Geisendorf, S.15
Glas, C.16
Hofmann, T.G.17
Nessling, M.18
Richter, K.19
Schiffer, M.20
Carrier, L.21
Napp, L.C.22
Bauersachs, J.23
Chowdhury, K.24
Thum, T.25
more..
-
24
-
-
84863011747
-
MicroRNA-30a sensitizes tumor cells to cisplatinum via suppressing beclin 1-mediated autophagy
-
Zou Z, Wu L, Ding H, Wang Y, Zhang Y, Chen X, Chen X, Zhang CY, Zhang Q, Zen K: MicroRNA-30a sensitizes tumor cells to cisplatinum via suppressing beclin 1-mediated autophagy. J Biol Chem 2012; 287: 4148-4156.
-
(2012)
J Biol Chem
, vol.287
, pp. 4148-4156
-
-
Zou, Z.1
Wu, L.2
Ding, H.3
Wang, Y.4
Zhang, Y.5
Chen, X.6
Chen, X.7
Zhang, C.Y.8
Zhang, Q.9
Zen, K.10
-
25
-
-
84929010641
-
Depletion of autophagy-related genes ATG3 and ATG5 in tenebrio molitor leads to decreased survivability against an intracellular pathogen, listeria monocytogenes
-
Tindwa H, Jo YH, Patnaik BB, Noh MY, Kim DH, Kim I, Han YS, Lee YS, Lee BL, Kim NJ: Depletion of autophagy-related genes ATG3 and ATG5 in tenebrio molitor leads to decreased survivability against an intracellular pathogen, listeria monocytogenes. Arch Insect Biochem Physiol 2015; 88: 85-99.
-
(2015)
Arch Insect Biochem Physiol
, vol.88
, pp. 85-99
-
-
Tindwa, H.1
Jo, Y.H.2
Patnaik, B.B.3
Noh, M.Y.4
Kim, D.H.5
Kim, I.6
Han, Y.S.7
Lee, Y.S.8
Lee, B.L.9
Kim, N.J.10
-
26
-
-
72549095406
-
Regulation mechanisms and signaling pathways of autophagy
-
He C, Klionsky DJ: Regulation mechanisms and signaling pathways of autophagy. Annu Rev Genet 2009; 43: 67-93.
-
(2009)
Annu Rev Genet
, vol.43
, pp. 67-93
-
-
He, C.1
Klionsky, D.J.2
-
27
-
-
84903792417
-
Atg1 kinase organizes autophagosome formation by phosphorylating atg9
-
Papinski D, Kraft C: Atg1 kinase organizes autophagosome formation by phosphorylating Atg9. Autophagy 2014; 10: 1338-1340.
-
(2014)
Autophagy
, vol.10
, pp. 1338-1340
-
-
Papinski, D.1
Kraft, C.2
-
28
-
-
77953122645
-
LC3 and GATE-16/GABARAP subfamilies are both essential yet act differently in autophagosome biogenesis
-
Weidberg H, Shvets E, Shpilka T, Shimron F, Shinder V, Elazar Z: LC3 and GATE-16/GABARAP subfamilies are both essential yet act differently in autophagosome biogenesis. EMBO J 2010; 29: 1792-1802.
-
(2010)
EMBO J
, vol.29
, pp. 1792-1802
-
-
Weidberg, H.1
Shvets, E.2
Shpilka, T.3
Shimron, F.4
Shinder, V.5
Elazar, Z.6
-
29
-
-
0032898636
-
Apg7p/Cvt2p: A novel protein-activating enzyme essential for autophagy
-
Tanida I, Mizushima N, Kiyooka M, Ohsumi M, Ueno T, Ohsumi Y, Kominami E: Apg7p/Cvt2p: a novel protein-activating enzyme essential for autophagy. Mol Biol Cell 1999; 10: 1367-1379.
-
(1999)
Mol Biol Cell
, vol.10
, pp. 1367-1379
-
-
Tanida, I.1
Mizushima, N.2
Kiyooka, M.3
Ohsumi, M.4
Ueno, T.5
Ohsumi, Y.6
Kominami, E.7
-
30
-
-
0033214582
-
Apg10p, a novel protein-conjugating enzyme essential for autophagy in yeast
-
Shintani T, Mizushima N, Ogawa Y, Matsuura A, Noda T, Ohsumi Y: Apg10p, a novel protein-conjugating enzyme essential for autophagy in yeast. EMBO J 1999; 18: 5234-5241.
-
(1999)
EMBO J
, vol.18
, pp. 5234-5241
-
-
Shintani, T.1
Mizushima, N.2
Ogawa, Y.3
Matsuura, A.4
Noda, T.5
Ohsumi, Y.6
-
31
-
-
51049118332
-
The ATG8 and ATG12 ubiquitin-like conjugation systems in macroautophagy. 'Protein modifications: Beyond the usual suspects' review series
-
Geng J, Klionsky DJ: The ATG8 and ATG12 ubiquitin-like conjugation systems in macroautophagy. 'Protein modifications: beyond the usual suspects' review series. EMBO Rep 2008; 9: 859-864.
-
(2008)
EMBO Rep
, vol.9
, pp. 859-864
-
-
Geng, J.1
Klionsky, D.J.2
-
32
-
-
0034676037
-
The reversible modification regulates the membrane-binding state of Apg8/Aut7 essential for autophagy and the cytoplasm to vacuole targeting pathway
-
Kirisako T, Ichimura Y, Okada H, Kabeya Y, Mizushima N, Yoshimori T, Ohsumi M, Takao T, Noda T, Ohsumi Y: The reversible modification regulates the membrane-binding state of Apg8/Aut7 essential for autophagy and the cytoplasm to vacuole targeting pathway. J Cell Biol 2000; 151: 263-276.
-
(2000)
J Cell Biol
, vol.151
, pp. 263-276
-
-
Kirisako, T.1
Ichimura, Y.2
Okada, H.3
Kabeya, Y.4
Mizushima, N.5
Yoshimori, T.6
Ohsumi, M.7
Takao, T.8
Noda, T.9
Ohsumi, Y.10
-
33
-
-
0034707036
-
A ubiquitin-like system mediates protein lipidation
-
Ichimura Y, Kirisako T, Takao T, Satomi Y, Shimonishi Y, Ishihara N, Mizushima N, Tanida I, Kominami E, Ohsumi M, Noda T, Ohsumi Y: A ubiquitin-like system mediates protein lipidation. Nature 2000; 408: 488-492.
-
(2000)
Nature
, vol.408
, pp. 488-492
-
-
Ichimura, Y.1
Kirisako, T.2
Takao, T.3
Satomi, Y.4
Shimonishi, Y.5
Ishihara, N.6
Mizushima, N.7
Tanida, I.8
Kominami, E.9
Ohsumi, M.10
Noda, T.11
Ohsumi, Y.12
-
34
-
-
0347695019
-
A single protease, apg4b, is specific for the autophagy-related ubiquitin-like proteins GATE-16, MAP1-LC3, GABARAP, and apg8l
-
Hemelaar J, Lelyveld VS, Kessler BM, Ploegh HL: A single protease, Apg4B, is specific for the autophagy-related ubiquitin-like proteins GATE-16, MAP1-LC3, GABARAP, and Apg8L. J Biol Chem 2003; 278: 51841-51850.
-
(2003)
J Biol Chem
, vol.278
, pp. 51841-51850
-
-
Hemelaar, J.1
Lelyveld, V.S.2
Kessler, B.M.3
Ploegh, H.L.4
-
35
-
-
84857256919
-
Atg4 recycles inappropriately lipidated atg8 to promote autophagosome biogenesis
-
Nakatogawa H, Ishii J, Asai E, Ohsumi Y: Atg4 recycles inappropriately lipidated Atg8 to promote autophagosome biogenesis. Autophagy 2012; 8: 177-186.
-
(2012)
Autophagy
, vol.8
, pp. 177-186
-
-
Nakatogawa, H.1
Ishii, J.2
Asai, E.3
Ohsumi, Y.4
-
36
-
-
65649136884
-
The structure of atg4b-LC3 complex reveals the mechanism of LC3 processing and delipidation during autophagy
-
Satoo K, Noda NN, Kumeta H, Fujioka Y, Mizushima N, Ohsumi Y, Inagaki F: The structure of Atg4B-LC3 complex reveals the mechanism of LC3 processing and delipidation during autophagy. EMBO J 2009; 28: 1341-1350.
-
(2009)
EMBO J
, vol.28
, pp. 1341-1350
-
-
Satoo, K.1
Noda, N.N.2
Kumeta, H.3
Fujioka, Y.4
Mizushima, N.5
Ohsumi, Y.6
Inagaki, F.7
|