메뉴 건너뛰기




Volumn 19, Issue 7, 2015, Pages 1125-1132

Chinese social media analysis for disease surveillance

Author keywords

Chinese; Classification; Flu; Prediction; Social media; SVMLIGHT

Indexed keywords

CLASSIFICATION (OF INFORMATION); FORECASTING; HEALTH RISKS; INTERNET; MONITORING; TEXT PROCESSING;

EID: 84942363626     PISSN: 16174909     EISSN: None     Source Type: Journal    
DOI: 10.1007/s00779-015-0877-5     Document Type: Article
Times cited : (23)

References (26)
  • 2
    • 84942369438 scopus 로고    scopus 로고
    • Infographic
    • Infographic (2012) The growing impact of social media. http://www.sociallyawareblog.com/2012/11/21/time-americans-spend-per-month-on-social-media-sites/
    • (2012) The growing impact of social media
  • 3
    • 84883111635 scopus 로고    scopus 로고
    • OMG u got flu? Analysis of shared health messages for bio-surveillance
    • Collier N, Son NT, Nguyen NM (2011) OMG u got flu? Analysis of shared health messages for bio-surveillance. J. Biomed Semant 2(S–5):S9
    • (2011) J. Biomed Semant , vol.2 , Issue.S–5 , pp. S9
    • Collier, N.1    Son, N.T.2    Nguyen, N.M.3
  • 5
    • 67349268124 scopus 로고    scopus 로고
    • Social media: the new hybrid element of the promotion mix
    • Mangold WG, Faulds DJ (2009) Social media: the new hybrid element of the promotion mix. Bus Horiz 52(4):357–365
    • (2009) Bus Horiz , vol.52 , Issue.4 , pp. 357-365
    • Mangold, W.G.1    Faulds, D.J.2
  • 6
    • 77956012671 scopus 로고    scopus 로고
    • Social web mining and exploitation for serious applications. Technosocial predictive analytics and related technologies for public health, environmental and national security surveillance
    • Kamel Boulos MN, Sanfilippo AP, Corley CD, Wheeler S (2010) Social web mining and exploitation for serious applications. Technosocial predictive analytics and related technologies for public health, environmental and national security surveillance. Comput Methods Programs Biomed 100(1):16–23
    • (2010) Comput Methods Programs Biomed , vol.100 , Issue.1 , pp. 16-23
    • Kamel Boulos, M.N.1    Sanfilippo, A.P.2    Corley, C.D.3    Wheeler, S.4
  • 9
    • 84868268429 scopus 로고    scopus 로고
    • Predicting disease transmission from geo-tagged micro-blog data. In, Twenty-sixth AAAI conference on artificial intelligence
    • Sadilek A, Kautz HA, Silenzio (2012a) Predicting disease transmission from geo-tagged micro-blog data. In: Twenty-sixth AAAI conference on artificial intelligence
    • (2012) Silenzio
    • Sadilek, A.1    Kautz, H.A.2
  • 11
    • 33751287730 scopus 로고    scopus 로고
    • Machine learning techniques in disease forecasting: a case study on rice blast prediction
    • Kaundal R, Kapoor AS, Raghava GP (2006) Machine learning techniques in disease forecasting: a case study on rice blast prediction. BMC Bioinform 7(1):485
    • (2006) BMC Bioinform , vol.7 , Issue.1 , pp. 485
    • Kaundal, R.1    Kapoor, A.S.2    Raghava, G.P.3
  • 13
    • 84901788435 scopus 로고    scopus 로고
    • Short message classification of microblogging based on semantic
    • Zheng-yan C (2010) Short message classification of microblogging based on semantic. Mod Comput 8:006
    • (2010) Mod Comput , vol.8 , pp. 006
    • Zheng-yan, C.1
  • 16
    • 84892944449 scopus 로고    scopus 로고
    • Constructing the web of events from raw data in the web of things
    • Sun Y, Yan H, Lu C, Bie R, Zhou Z (2014) Constructing the web of events from raw data in the web of things. Mob Inf Syst 10(1):105–125
    • (2014) Mob Inf Syst , vol.10 , Issue.1 , pp. 105-125
    • Sun, Y.1    Yan, H.2    Lu, C.3    Bie, R.4    Zhou, Z.5
  • 17
    • 80052507130 scopus 로고    scopus 로고
    • Stove A (2011) Use of the Kullback–Leibler divergence in estimating clutter distributions
    • RADAR, IEEE
    • Ritchie M, Charlish A, Woodbridge K, Stove A (2011) Use of the Kullback–Leibler divergence in estimating clutter distributions. In: 2011 IEEE on radar conference (RADAR). IEEE, pp 751–756
    • 2011 IEEE on radar conference , pp. 751-756
    • Ritchie, M.1    Charlish, A.2    Woodbridge, K.3
  • 18
    • 33750388702 scopus 로고    scopus 로고
    • Probabilistic models of information retrieval based on measuring the divergence from randomness
    • Amati G, Van Rijsbergen CJ (2002) Probabilistic models of information retrieval based on measuring the divergence from randomness. ACM Trans Inf Syst (TOIS) 20(4):357–389
    • (2002) ACM Trans Inf Syst (TOIS) , vol.20 , Issue.4 , pp. 357-389
    • Amati, G.1    Van Rijsbergen, C.J.2
  • 19
    • 45549117987 scopus 로고
    • Term-weighting approaches in automatic text retrieval
    • Salton G, Buckley C (1988) Term-weighting approaches in automatic text retrieval. Inf Process Manag 24(5):513–523
    • (1988) Inf Process Manag , vol.24 , Issue.5 , pp. 513-523
    • Salton, G.1    Buckley, C.2
  • 20
    • 84867732117 scopus 로고    scopus 로고
    • Feature extraction using maximum variance sparse mapping
    • Liu J, Li B, Zhang W-S (2012) Feature extraction using maximum variance sparse mapping. Neural Comput Appl 21(8):1827–1833
    • (2012) Neural Comput Appl , vol.21 , Issue.8 , pp. 1827-1833
    • Liu, J.1    Li, B.2    Zhang, W.-S.3
  • 21
    • 84879118238 scopus 로고    scopus 로고
    • A feature-selection algorithm based on support vector machine-multiclass for hyperspectral visible spectral analysis
    • Deng S, Xu Y, Li L, Li X, He Y (2013) A feature-selection algorithm based on support vector machine-multiclass for hyperspectral visible spectral analysis. J Food Eng 119(1):159–166
    • (2013) J Food Eng , vol.119 , Issue.1 , pp. 159-166
    • Deng, S.1    Xu, Y.2    Li, L.3    Li, X.4    He, Y.5
  • 22
    • 34249753618 scopus 로고
    • Support-vector networks
    • Cortes C, Vapnik V (1995) Support-vector networks. Mach Learn 20(3):273–297
    • (1995) Mach Learn , vol.20 , Issue.3 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 25
    • 84928016411 scopus 로고    scopus 로고
    • Sensitivity of support vector machine classification to various training features
    • Yang N, Li S, Liu J, Bian F (2014) Sensitivity of support vector machine classification to various training features. TELKOMNIKA Indones J Electr Eng 12(1):286–291
    • (2014) TELKOMNIKA Indones J Electr Eng , vol.12 , Issue.1 , pp. 286-291
    • Yang, N.1    Li, S.2    Liu, J.3    Bian, F.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.