메뉴 건너뛰기




Volumn 7, Issue , 2006, Pages

Machine learning techniques in disease forecasting: A case study on rice blast prediction

Author keywords

[No Author keywords available]

Indexed keywords

AVERAGE CORRELATION COEFFICIENTS; BACK-PROPAGATION NEURAL NETWORKS; DECISION MAKING PROCESS; DISEASE FORECASTING; GENERALIZED REGRESSION NEURAL NETWORK(GRNN); MACHINE LEARNING TECHNIQUES; MULTIPLE REGRESSIONS; PREDICTOR VARIABLES;

EID: 33751287730     PISSN: 14712105     EISSN: 14712105     Source Type: Journal    
DOI: 10.1186/1471-2105-7-485     Document Type: Article
Times cited : (141)

References (51)
  • 1
    • 0037371094 scopus 로고    scopus 로고
    • Relative performance of five forecasting schemes for potato late blight (Phytophthora infestans) I. Accuracy of infection warnings and reduction of unnecessary, theoretical, fungicide applications
    • Taylor MC, Hardwick NV, Bradshaw NJ, Hall AM: Relative performance of five forecasting schemes for potato late blight (Phytophthora infestans) I. Accuracy of infection warnings and reduction of unnecessary, theoretical, fungicide applications. Crop Protection 2003, 22:275-83.
    • (2003) Crop Protection , vol.22 , pp. 275-283
    • Taylor, M.C.1    Hardwick, N.V.2    Bradshaw, N.J.3    Hall, A.M.4
  • 2
    • 12644320622 scopus 로고
    • Computer based forecasting of rice blast epidemics in Japan. Rice blast modelling and forecasting
    • Selected papers from the International Rice Research Conference, 27-31 August Seoul, Korea Republic
    • Ishiguro K, Hashimoto A: Computer based forecasting of rice blast epidemics in Japan. Rice blast modelling and forecasting. Selected papers from the International Rice Research Conference, 27-31 August 1990, Seoul, Korea Republic : 39-51.
    • (1990) , pp. 39-51
    • Ishiguro, K.1    Hashimoto, A.2
  • 4
    • 12644316861 scopus 로고
    • LEAFBLAST: A computer simulation model for leaf blast development on rice
    • Choi WJ, Park EW, Lee EJ: LEAFBLAST: A computer simulation model for leaf blast development on rice. Korean Journal of Plant Pathology 1988, 4(1):25-32.
    • (1988) Korean Journal of Plant Pathology , vol.4 , Issue.1 , pp. 25-32
    • Choi, W.J.1    Park, E.W.2    Lee, E.J.3
  • 7
    • 12644321055 scopus 로고
    • A study on computerized forecast of rice blast
    • Zhejiang Research Group Computerized Forecast Rice Blast
    • Zhejiang Research Group Computerized Forecast Rice Blast: A study on computerized forecast of rice blast. Zhejiang Agricultural Science 1986, 2:74-79.
    • (1986) Zhejiang Agricultural Science , vol.2 , pp. 74-79
  • 8
    • 12644316860 scopus 로고
    • Prediction of rice leaf blast. III. Meteorological variables and percentage of leaf area infected by Pyricularia oryzae
    • Tsai WH: Prediction of rice leaf blast. III. Meteorological variables and percentage of leaf area infected by Pyricularia oryzae. Plant Prot Bull Taiwan 1986, 28(1):111-117.
    • (1986) Plant Prot Bull Taiwan , vol.28 , Issue.1 , pp. 111-117
    • Tsai, W.H.1
  • 11
    • 84886758233 scopus 로고    scopus 로고
    • Forecasting of rice blast disease epidemic in northern region of Kerala
    • Premanathan T, Rao GSLHVP, Mahana NK: Forecasting of rice blast disease epidemic in northern region of Kerala. Oryza 1999, 36(4):364-368.
    • (1999) Oryza , vol.36 , Issue.4 , pp. 364-368
    • Premanathan, T.1    Rao, G.S.L.H.V.P.2    Mahana, N.K.3
  • 13
    • 12644316977 scopus 로고
    • BLASTSIM.2 a model for tropical leaf blast-rice pathosystem
    • Calvero SB Jr, Teng PS: BLASTSIM.2 a model for tropical leaf blast-rice pathosystem. Philippine Phytopathology 1991, 27:46.
    • (1991) Philippine Phytopathology , vol.27 , pp. 46
    • Calvero Jr., S.B.1    Teng, P.S.2
  • 14
    • 0030431031 scopus 로고    scopus 로고
    • Development of empirical forecasting models for rice blast based on weather factors
    • Calvero SB Jr, Coakley SM, Teng PS: Development of empirical forecasting models for rice blast based on weather factors. Plant Pathology 1996, 45:667-678.
    • (1996) Plant Pathology , vol.45 , pp. 667-678
    • Calvero Jr., S.B.1    Coakley, S.M.2    Teng, P.S.3
  • 16
    • 0028993757 scopus 로고
    • Quantitative relationships between Colletotrichum gloeosporioides infection of Stylosanthes scabra and weather factors under field conditions
    • Chakraborty S, Billard L: Quantitative relationships between Colletotrichum gloeosporioides infection of Stylosanthes scabra and weather factors under field conditions. Plant Pathology 1995, 44:63-72.
    • (1995) Plant Pathology , vol.44 , pp. 63-72
    • Chakraborty, S.1    Billard, L.2
  • 17
    • 1942505023 scopus 로고    scopus 로고
    • Influence of climatic factors on plant architecture of Stylosanthes scabra and the epidemiology of the anthracnose disease
    • Brisbane Australia: University of Queensland Ph.D. Thesis
    • Pangga IB: Influence of climatic factors on plant architecture of Stylosanthes scabra and the epidemiology of the anthracnose disease. Brisbane Australia: University of Queensland Ph.D. Thesis 2002.
    • (2002)
    • Pangga, I.B.1
  • 20
    • 0031034946 scopus 로고    scopus 로고
    • Neural networks that distinguish infection periods of wheat tan spot in an outdoor environment
    • De Wolf ED, Francl LJ: Neural networks that distinguish infection periods of wheat tan spot in an outdoor environment. Phytopathology 1997, 87:83-87.
    • (1997) Phytopathology , vol.87 , pp. 83-87
    • De Wolf, E.D.1    Francl, L.J.2
  • 21
    • 0033958522 scopus 로고    scopus 로고
    • Neural network classification of tan spot and stagonospora blotch infection periods in a wheat field environment
    • De Wolf ED, Francl LJ: Neural network classification of tan spot and stagonospora blotch infection periods in a wheat field environment. Phytopathology 2000, 90:108-113.
    • (2000) Phytopathology , vol.90 , pp. 108-113
    • De Wolf, E.D.1    Francl, L.J.2
  • 22
    • 4344584274 scopus 로고    scopus 로고
    • Squeezing the turnip with artificial neural nets
    • Francl LJ: Squeezing the turnip with artificial neural nets. Phytopathology 2004, 94:1007-1012.
    • (2004) Phytopathology , vol.94 , pp. 1007-1012
    • Francl, L.J.1
  • 23
    • 15544388262 scopus 로고    scopus 로고
    • Regression and Artificial Neural Network Modeling for the Prediction of Gray Leaf Spot of Maize
    • Paul PA, Munkvold GP: Regression and Artificial Neural Network Modeling for the Prediction of Gray Leaf Spot of Maize. Phytopathology 2005, 95:388-396.
    • (2005) Phytopathology , vol.95 , pp. 388-396
    • Paul, P.A.1    Munkvold, G.P.2
  • 24
    • 0003444646 scopus 로고
    • Parallel Distributed Processing
    • the PDP Research Group: In Issue ch. 8 Cambridge, MA MIT Press
    • Rumelhart DE, McClelland JL, the PDP Research Group: Parallel Distributed Processing. In Foundations Volume I. Issue ch. 8 Cambridge, MA MIT Press; 1986.
    • (1986) Foundations Volume I
    • Rumelhart, D.E.1    McClelland, J.L.2
  • 26
    • 0033553903 scopus 로고    scopus 로고
    • A generalized regression neural network and its application for leaf wetness prediction to forecast plant disease
    • Chtioui Y, Francl LJ, Panigrahi S: A generalized regression neural network and its application for leaf wetness prediction to forecast plant disease. Chemometrics and Intelligent Laboratory Systems 1999, 48(1):47-58.
    • (1999) Chemometrics and Intelligent Laboratory Systems , vol.48 , Issue.1 , pp. 47-58
    • Chtioui, Y.1    Francl, L.J.2    Panigrahi, S.3
  • 27
    • 0032813298 scopus 로고    scopus 로고
    • Moisture prediction from simple micrometeorological data
    • Chtioui Y, Francl LJ, Panigrahi S: Moisture prediction from simple micrometeorological data. Phytopathology 1999, 89:668-672.
    • (1999) Phytopathology , vol.89 , pp. 668-672
    • Chtioui, Y.1    Francl, L.J.2    Panigrahi, S.3
  • 31
    • 28444448722 scopus 로고    scopus 로고
    • Discrimination of outer membrane proteins using support vector machines
    • Park KJ, Gromiha MM, Horton P, Suwa M: Discrimination of outer membrane proteins using support vector machines. Bioinformatics 2005, 21:4223-4229.
    • (2005) Bioinformatics , vol.21 , pp. 4223-4229
    • Park, K.J.1    Gromiha, M.M.2    Horton, P.3    Suwa, M.4
  • 32
    • 0034843744 scopus 로고    scopus 로고
    • Support vector machine approach for protein subcellular localization prediction
    • Hua S, Sun Z: Support vector machine approach for protein subcellular localization prediction. Bioinformatics 2001, 17:721-728.
    • (2001) Bioinformatics , vol.17 , pp. 721-728
    • Hua, S.1    Sun, Z.2
  • 33
    • 19544388127 scopus 로고    scopus 로고
    • PSLpred: Prediction of subcellular localization of bacterial proteins
    • Bhasin M, Garg A, Raghava GPS: PSLpred: prediction of subcellular localization of bacterial proteins. Bioinformatics 2005, 21:2522-4.
    • (2005) Bioinformatics , vol.21 , pp. 2522-2524
    • Bhasin, M.1    Garg, A.2    Raghava, G.P.S.3
  • 34
    • 17644389617 scopus 로고    scopus 로고
    • SVM-based method for subcellular localization of human proteins using amino acid compositions, their order and similarity search
    • Garg A, Bhasin M, Raghava GPS: SVM-based method for subcellular localization of human proteins using amino acid compositions, their order and similarity search. Journal of Biological Chemistry 2005, 280:14427-32.
    • (2005) Journal of Biological Chemistry , vol.280 , pp. 14427-14432
    • Garg, A.1    Bhasin, M.2    Raghava, G.P.S.3
  • 35
    • 14644440766 scopus 로고    scopus 로고
    • Prediction of protein relative solvent accessibility with a two-stage SVM approach
    • Nguyen MN, Rajapakse JC: Prediction of protein relative solvent accessibility with a two-stage SVM approach. Proteins 2005, 59(1):30-37.
    • (2005) Proteins , vol.59 , Issue.1 , pp. 30-37
    • Nguyen, M.N.1    Rajapakse, J.C.2
  • 36
    • 3843052528 scopus 로고    scopus 로고
    • Prediction of CTL epitopes using QM, SVM and ANN techniques
    • Bhasin M, Raghava GPS: Prediction of CTL epitopes using QM, SVM and ANN techniques. Vaccine 2004, 22:3195-3201.
    • (2004) Vaccine , vol.22 , pp. 3195-3201
    • Bhasin, M.1    Raghava, G.P.S.2
  • 37
    • 1342288007 scopus 로고    scopus 로고
    • SVM based method for predicting HLA-DRB1*0401 binding peptides in an antigen sequence
    • Bhasin M, Raghava GPS: SVM based method for predicting HLA-DRB1*0401 binding peptides in an antigen sequence. Bioinformatics 2004, 12:421.
    • (2004) Bioinformatics , vol.12 , pp. 421
    • Bhasin, M.1    Raghava, G.P.S.2
  • 38
    • 15944362593 scopus 로고    scopus 로고
    • Two-stage multi-class support vector machines to protein secondary structure prediction
    • Nguyen MN, Rajapakse JC: Two-stage multi-class support vector machines to protein secondary structure prediction. Pacific Symposium on Biocomputing, 2005, 10:346-357.
    • (2005) Pacific Symposium on Biocomputing , vol.10 , pp. 346-357
    • Nguyen, M.N.1    Rajapakse, J.C.2
  • 39
    • 17444372787 scopus 로고    scopus 로고
    • Improved prediction of protein-protein binding sites using a support vector machines approach
    • Bradford JR, Westhead DR: Improved prediction of protein-protein binding sites using a support vector machines approach. Bioinformatics 2005, 21(8):1487-1494.
    • (2005) Bioinformatics , vol.21 , Issue.8 , pp. 1487-1494
    • Bradford, J.R.1    Westhead, D.R.2
  • 40
    • 25444464110 scopus 로고    scopus 로고
    • Correlation and prediction of gene expression level from amino acid and dipeptide composition of its protein
    • Raghava GPS, Han JH: Correlation and prediction of gene expression level from amino acid and dipeptide composition of its protein. BMC Bioinformatics 2005, 6:59.
    • (2005) BMC Bioinformatics , vol.6 , pp. 59
    • Raghava, G.P.S.1    Han, J.H.2
  • 42
    • 0037195776 scopus 로고    scopus 로고
    • Using Functional Domain Composition and Support Vector Machines for Prediction of Protein Subcellular Location
    • Chou KC, Cai YD: Using Functional Domain Composition and Support Vector Machines for Prediction of Protein Subcellular Location. Journal of Biological Chemistry 2002, 277(48):45765-45769.
    • (2002) Journal of Biological Chemistry , vol.277 , Issue.48 , pp. 45765-45769
    • Chou, K.C.1    Cai, Y.D.2
  • 43
    • 14644441659 scopus 로고    scopus 로고
    • Multidimensional support vector machines for visualization of gene expression data
    • Komura D, Nakamura H, Tsutsumi S, Aburatani H, Ihara S: Multidimensional support vector machines for visualization of gene expression data. Bioinformatics 2005, 21(4):439-444.
    • (2005) Bioinformatics , vol.21 , Issue.4 , pp. 439-444
    • Komura, D.1    Nakamura, H.2    Tsutsumi, S.3    Aburatani, H.4    Ihara, S.5
  • 45
    • 1442340153 scopus 로고    scopus 로고
    • Estimation of grain yield losses caused by blast in upland rice
    • Prabhu AS, Araujo LG, Faustina C: Estimation of grain yield losses caused by blast in upland rice. Pesq Agropec Bras 2003, 38(9):1045-1051.
    • (2003) Pesq Agropec Bras , vol.38 , Issue.9 , pp. 1045-1051
    • Prabhu, A.S.1    Araujo, L.G.2    Faustina, C.3
  • 46
    • 33751267535 scopus 로고    scopus 로고
    • International Rice Blast Genome Project Consortium
    • International Rice Blast Genome Project Consortium: Statement of intent 2005.
    • (2005) Statement of Intent
  • 47
    • 33751260669 scopus 로고
    • International Rice Research Institute publications: IRRI, Philippines
    • International Rice Research Institute publications: Rice blast modeling & forecasting IRRI, Philippines; 1991.
    • (1991) Rice Blast Modeling & Forecasting
  • 49
    • 0003401675 scopus 로고    scopus 로고
    • A tutorial on support vector regression
    • NC-TR-1998-030
    • Smola A, Scholkopf B: A tutorial on support vector regression. NeuroCOLY Technical Report 1998 [http://www.neurocolt.com/abs/1998/abs98030.html]. NC-TR-1998-030
    • (1998) NeuroCOLY Technical Report
    • Smola, A.1    Scholkopf, B.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.