메뉴 건너뛰기




Volumn 45, Issue 2, 2015, Pages 271-294

A unified statistical framework for crowd labeling

Author keywords

Crowdsourcing; Human computation; Inference; Labeling; Latent model; Mechanical turk

Indexed keywords

COST EFFECTIVENESS; CROWDSOURCING; INFERENCE ENGINES; LABELING; LARGE DATASET; SURVEYS;

EID: 84942293165     PISSN: 02191377     EISSN: 02193116     Source Type: Journal    
DOI: 10.1007/s10115-014-0790-7     Document Type: Article
Times cited : (24)

References (72)
  • 1
    • 2942679728 scopus 로고    scopus 로고
    • A cautionary note on the robustness of latent class models for estimating diagnostic error without a gold standard
    • Albert PS, Dodd LE (2004) A cautionary note on the robustness of latent class models for estimating diagnostic error without a gold standard. Biometrics 60(2):427–435
    • (2004) Biometrics , vol.60 , Issue.2 , pp. 427-435
    • Albert, P.S.1    Dodd, L.E.2
  • 2
    • 0001199215 scopus 로고
    • A general class of coefficients of divergence of one distribution from another
    • Ali SM, Silvey SD (1966) A general class of coefficients of divergence of one distribution from another. J R Stat Soc Ser B (Methodological) 28:131–142
    • (1966) J R Stat Soc Ser B (Methodological) , vol.28 , pp. 131-142
    • Ali, S.M.1    Silvey, S.D.2
  • 3
    • 80052686950 scopus 로고    scopus 로고
    • Online active inference and learning
    • Attenberg J, Provost FJ (2011) Online active inference and learning, KDD, pp 186–194
    • (2011) KDD , pp. 186-194
    • Attenberg, J.1    Provost, F.J.2
  • 4
    • 84867117736 scopus 로고    scopus 로고
    • How To grade a test without knowing the answers—a Bayesian graphical model for adaptive crowdsourcing and aptitude testing
    • Bachrach Y, Graepel T, Minka T, Guiver J (2012) How To grade a test without knowing the answers—a Bayesian graphical model for adaptive crowdsourcing and aptitude testing, ICML
    • (2012) ICML
    • Bachrach, Y.1    Graepel, T.2    Minka, T.3    Guiver, J.4
  • 5
    • 84884596434 scopus 로고    scopus 로고
    • Geographic knowledge extraction and semantic similarity in OpenStreetMap
    • Ballatore A, Bertolotto M, Wilson DC (2013) Geographic knowledge extraction and semantic similarity in OpenStreetMap. Knowl Inf Syst 37(1):61–81
    • (2013) Knowl Inf Syst , vol.37 , Issue.1 , pp. 61-81
    • Ballatore, A.1    Bertolotto, M.2    Wilson, D.C.3
  • 7
    • 84942300187 scopus 로고    scopus 로고
    • Brandt J: Analytic methods for optimizing realtime crowdsourcing. CoRR
    • Bernstein MS, Karger DR, Miller RC, Brandt J (2012) Analytic methods for optimizing realtime crowdsourcing. CoRR
    • (2012) Miller RC
    • Bernstein, M.S.1    Karger, D.R.2
  • 8
    • 0002741413 scopus 로고
    • Large scale sparse singular value computations
    • Berry MW (1992) Large scale sparse singular value computations. Int J Supercomput Appl 6:13–49
    • (1992) Int J Supercomput Appl , vol.6 , pp. 13-49
    • Berry, M.W.1
  • 12
    • 84901398917 scopus 로고    scopus 로고
    • Optimistic knowledge gradient policy for optimal budget allocation in crowdsourcing
    • Chen X, Lin Q, Zhou D (2013) Optimistic knowledge gradient policy for optimal budget allocation in crowdsourcing. ICML 2013:64–72
    • (2013) ICML , vol.2013 , pp. 64-72
    • Chen, X.1    Lin, Q.2    Zhou, D.3
  • 14
    • 84942300190 scopus 로고    scopus 로고
    • Weld DS: Artificial intelligence for artificial intelligence, AAAI
    • Dai P, Mausam, Weld DS (2011) Artificial intelligence for artificial intelligence, AAAI
    • (2011) Mausam
    • Dai, P.1
  • 15
    • 0003102944 scopus 로고
    • Maximum likelihood estimation of observer error-rates using the EM algorithm
    • Dawid AP, Skene AM (1979) Maximum likelihood estimation of observer error-rates using the EM algorithm. J R Stat Soc Ser C 28(1):20–28
    • (1979) J R Stat Soc Ser C , vol.28 , Issue.1 , pp. 20-28
    • Dawid, A.P.1    Skene, A.M.2
  • 16
    • 70049097966 scopus 로고    scopus 로고
    • Good learners for evil teachers
    • ACM, New York
    • Dekel O, Shamir O (2009a) Good learners for evil teachers. In: ICML, vol 382, 30. ACM, New York
    • (2009) ICML , vol.382 , Issue.30
    • Dekel, O.1    Shamir, O.2
  • 17
    • 84867409394 scopus 로고    scopus 로고
    • Vox populi, collecting high-quality labels from a crowd
    • Dekel O, Shamir O (2009b) Vox populi, collecting high-quality labels from a crowd. In: COLT
    • (2009) In: COLT
    • Dekel, O.1    Shamir, O.2
  • 20
    • 84874049835 scopus 로고    scopus 로고
    • Self-taught active learning from crowds
    • Fang M, Zhu X, Li B, Ding W, Wu X (2012) Self-taught active learning from crowds. ICDM, pp 858–863
    • (2012) ICDM , pp. 858-863
    • Fang, M.1    Zhu, X.2    Li, B.3    Ding, W.4    Wu, X.5
  • 22
    • 84876057388 scopus 로고    scopus 로고
    • A survey on instance selection for active learning
    • Fu Y, Zhu X, Li B (2013) A survey on instance selection for active learning. Knowl Inf Syst 35(2):249–283
    • (2013) Knowl Inf Syst , vol.35 , Issue.2 , pp. 249-283
    • Fu, Y.1    Zhu, X.2    Li, B.3
  • 23
    • 85018109911 scopus 로고    scopus 로고
    • Crowdsourcing document relevance assessment with mechanical turk. In: Proceedings of the NAACL HLT 2010 workshop on creating speech and language data with Amazon’s mechanical turk, Association for Computational Linguistics
    • Grady C, Lease M (2010) Crowdsourcing document relevance assessment with mechanical turk. In: Proceedings of the NAACL HLT 2010 workshop on creating speech and language data with Amazon’s mechanical turk, Association for Computational Linguistics, pp 172–179
    • (2010) pp 172–179
    • Grady, C.1    Lease, M.2
  • 24
    • 56849109269 scopus 로고    scopus 로고
    • Crowdsourcing: why the power of the crowd is driving the future of business
    • Crown Business, United States
    • Howe J (2008) Crowdsourcing: why the power of the crowd is driving the future of business, 1st edn. Crown Business. United States
    • (2008) 1st edn
    • Howe, J.1
  • 25
    • 84880362739 scopus 로고    scopus 로고
    • Online task assignment in crowdsourcing markets
    • Ho CJ, Vaughan JW (2012) Online task assignment in crowdsourcing markets, AAAI
    • (2012) AAAI
    • Ho, C.J.1    Vaughan, J.W.2
  • 26
    • 84897504552 scopus 로고    scopus 로고
    • Adaptive task assignment for crowdsourced classification
    • Ho CJ, Jabbari S, Vaughan JW (2013) Adaptive task assignment for crowdsourced classification. JMLR W&CP 28(1):534–542
    • (2013) JMLR W&CP , vol.28 , Issue.1 , pp. 534-542
    • Ho, C.J.1    Jabbari, S.2    Vaughan, J.W.3
  • 30
    • 84866631974 scopus 로고    scopus 로고
    • Inferring missing relevance judgments from crowd workers via probabilistic matrix factorization
    • Jung HJ, Lease M (2012) Inferring missing relevance judgments from crowd workers via probabilistic matrix factorization. SIGIR 2012:1095–1096
    • (2012) SIGIR , vol.2012 , pp. 1095-1096
    • Jung, H.J.1    Lease, M.2
  • 34
    • 84865040057 scopus 로고    scopus 로고
    • Budget-optimal task allocation for reliable crowdsourcing systems
    • Karger DR, Oh S, Shah D (2011a) Budget-optimal task allocation for reliable crowdsourcing systems. CoRR abs/1110. 3564
    • (2011) CoRR abs/1110 , pp. 3564
    • Karger, D.R.1    Oh, S.2    Shah, D.3
  • 35
    • 84856118112 scopus 로고    scopus 로고
    • Budget-optimal crowdsourcing using low-rank matrix approximations. In: 49th annual conference on communication, control, and computing (Allerton)
    • Karger DR, Oh S, Shah D (2011b) Budget-optimal crowdsourcing using low-rank matrix approximations. In: 49th annual conference on communication, control, and computing (Allerton), pp 284–291
    • (2011) pp 284–291
    • Karger, D.R.1    Oh, S.2    Shah, D.3
  • 39
    • 84867130103 scopus 로고    scopus 로고
    • TrueLabel + confusions: a spectrum of probabilistic models in analyzing multiple ratings
    • Liu C, Wang YM (2012) TrueLabel + confusions: a spectrum of probabilistic models in analyzing multiple ratings. ICML
    • (2012) ICML
    • Liu, C.1    Wang, Y.M.2
  • 40
    • 84877752474 scopus 로고    scopus 로고
    • Variational inference for crowdsourcing. In: Advances in neural information processing systems (NIPS)
    • Liu Q, Peng J, Ihler A (2012) Variational inference for crowdsourcing. In: Advances in neural information processing systems (NIPS), pp 701–709
    • (2012) pp 701–709
    • Liu, Q.1    Peng, J.2    Ihler, A.3
  • 41
    • 79958132488 scopus 로고    scopus 로고
    • Financial incentives and the “performance of crowds
    • Mason WA, Watts DJ (2009) Financial incentives and the “performance of crowds”. KDD, pp 100–108
    • (2009) KDD , pp. 100-108
    • Mason, W.A.1    Watts, D.J.2
  • 43
    • 36248983312 scopus 로고    scopus 로고
    • From here to human-level AI
    • Mccarthy J (2007) From here to human-level AI. Artif Intell 171(18):1174–1182
    • (2007) Artif Intell , vol.171 , Issue.18 , pp. 1174-1182
    • Mccarthy, J.1
  • 46
    • 0038387331 scopus 로고    scopus 로고
    • A family of algorithms for approximate Bayesian inference (Doctoral dissertation
    • Minka TP (2001) A family of algorithms for approximate Bayesian inference (Doctoral dissertation, Massachusetts Institute of Technology)
    • (2001) Massachusetts Institute of Technology)
    • Minka, T.P.1
  • 50
    • 77954484198 scopus 로고    scopus 로고
    • Mass collaboration problem solving: a new approach to wicked problems. In: 2010 International symposium on collaborative technologies and systems
    • Potter A, McClure M, Sellers K (2010) Mass collaboration problem solving: a new approach to wicked problems. In: 2010 International symposium on collaborative technologies and systems, pp 398–407
    • (2010) pp 398–407
    • Potter, A.1    McClure, M.2    Sellers, K.3
  • 51
    • 0029795558 scopus 로고    scopus 로고
    • Random effects models in latent class analysis for evaluating accuracy of diagnostic tests
    • Qu Y, Tan M, Kutner MH (1996) Random effects models in latent class analysis for evaluating accuracy of diagnostic tests. Biometrics 52:797–810
    • (1996) Biometrics , vol.52 , pp. 797-810
    • Qu, Y.1    Tan, M.2    Kutner, M.H.3
  • 55
    • 84857856268 scopus 로고    scopus 로고
    • Eliminating spammers and ranking annotators for crowdsourced labeling tasks
    • Raykar VC, Yu S (2012) Eliminating spammers and ranking annotators for crowdsourced labeling tasks. J Mach Learn Res 13:491–518
    • (2012) J Mach Learn Res , vol.13 , pp. 491-518
    • Raykar, V.C.1    Yu, S.2
  • 56
    • 84891915732 scopus 로고    scopus 로고
    • Exploiting structure in crowdsourcing tasks via latent factor models. Technical Report TR2010. 01
    • Ruvolo P, Whitehill J, Movel-lan JR (2010) Exploiting structure in crowdsourcing tasks via latent factor models. Technical Report TR2010. 01, Machine Perception Laboratory
    • (2010) Machine Perception Laboratory
    • Ruvolo, P.1    Whitehill, J.2    Movel-lan, J.R.3
  • 57
    • 85161989354 scopus 로고    scopus 로고
    • Probabilistic matrix factorization
    • Salakhutdinov R, Mnih A (2008) Probabilistic matrix factorization. In NIPS 2008, vol 20
    • (2008) In NIPS , vol.20 , pp. 2008
    • Salakhutdinov, R.1    Mnih, A.2
  • 58
    • 84871096779 scopus 로고    scopus 로고
    • Bayesian modeling in machine learning: a tutorial review
    • Seeger M (2006) Bayesian modeling in machine learning: a tutorial review, Technical Report EPFL-161462
    • (2006) Technical Report EPFL-161462
    • Seeger, M.1
  • 59
    • 80051636275 scopus 로고    scopus 로고
    • Assessing the speaker recognition performance of naive listeners using mechanical turk
    • Shen W, Campbell JP, Straub D, Schwartz R (2011) Assessing the speaker recognition performance of naive listeners using mechanical turk. ICASSP 2011, pp 5916–5919
    • (2011) ICASSP , vol.2011 , pp. 5916-5919
    • Shen, W.1    Campbell, J.P.2    Straub, D.3    Schwartz, R.4
  • 61
    • 85018106148 scopus 로고    scopus 로고
    • Inferring ground truth from subjective labeling of venus images. In: NIPS
    • Smyth P, Fayyad U, Burl M, Perona P, Baldi P (1997) Inferring ground truth from subjective labeling of venus images. In: NIPS, pp 1–9
    • (1997) pp 1–9
    • Smyth, P.1    Fayyad, U.2    Burl, M.3    Perona, P.4    Baldi, P.5
  • 62
    • 80053360508 scopus 로고    scopus 로고
    • Cheap and Fast—but is it good? Evaluating non-expert annotations for natural language tasks
    • Snow R, O’Connor, Jurafsky D, Ng A (2008) Cheap and Fast—but is it good? Evaluating non-expert annotations for natural language tasks. In: Proceedings of EMNLP-08
    • (2008) In: Proceedings of EMNLP-08
    • Snow, R.1    O’Connor, J.D.2    Ng, A.3
  • 63
    • 1942516801 scopus 로고    scopus 로고
    • Weighted low-rank approximations. In: Proceedings of the Twentieth international conference of machine learning (ICML 2003). AAAI Press
    • Srebro N, Jaakkola T (2003) Weighted low-rank approximations. In: Proceedings of the Twentieth international conference of machine learning (ICML 2003). AAAI Press, pp 720–727
    • (2003) pp 720–727
    • Srebro, N.1    Jaakkola, T.2
  • 66
    • 33746597905 scopus 로고    scopus 로고
    • Evolution, sociobiology, and the future of artificial intelligence
    • Waltz DL (2006) Evolution, sociobiology, and the future of artificial intelligence. IEEE Intell Syst 21(3):66–69
    • (2006) IEEE Intell Syst , vol.21 , Issue.3 , pp. 66-69
    • Waltz, D.L.1
  • 68
    • 77951951247 scopus 로고    scopus 로고
    • Whose vote should count more: optimal integration of labels from labelers of unknown expertise
    • Whitehill J, Ruvolo P, Fan Wu T, Bergsma J, Movellan J (2009) Whose vote should count more: optimal integration of labels from labelers of unknown expertise. Adv Neural Inf Process Syst 22:2035–2043
    • (2009) Adv Neural Inf Process Syst , vol.22 , pp. 2035-2043
    • Whitehill, J.1    Ruvolo, P.2    Fan Wu, T.3    Bergsma, J.4    Movellan, J.5
  • 70
    • 84881146105 scopus 로고    scopus 로고
    • Exact low-rank matrix completion from sparsely corrupted entries via adaptive outlier pursuit
    • Yan M, Yang Y, Osher S (2013) Exact low-rank matrix completion from sparsely corrupted entries via adaptive outlier pursuit. J Sci Comput 56:433–449
    • (2013) J Sci Comput , vol.56 , pp. 433-449
    • Yan, M.1    Yang, Y.2    Osher, S.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.