메뉴 건너뛰기




Volumn 130, Issue , 2014, Pages 512-518

Multi-walled carbon nanotube/SnO2 nanocomposite: A novel anode material for microbial fuel cells

Author keywords

Anode modification; Carbon nanotubes; Microbial fuel cell; Nanocomposits; Tin oxide

Indexed keywords

ANODE MODIFICATION; CHARGE TRANSFER EFFICIENCY; ELECTROCHEMICAL PERFORMANCE; ENERGY DISPERSIVE X RAY SPECTROSCOPY; GLASSY CARBON ELECTRODES; MAXIMUM POWER DENSITY; MICROBIAL FUEL CELLS (MFCS); NANOCOMPOSITS;

EID: 84898074905     PISSN: 00134686     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.electacta.2014.03.011     Document Type: Article
Times cited : (166)

References (71)
  • 1
    • 34548434623 scopus 로고    scopus 로고
    • Microbial fuel cell performance with non-Pt cathode catalysts
    • E. HaoYu, S. Cheng, K. Scott, and B. Logan Microbial fuel cell performance with non-Pt cathode catalysts J. Power Sources 171 2007 275 281
    • (2007) J. Power Sources , vol.171 , pp. 275-281
    • Haoyu, E.1    Cheng, S.2    Scott, K.3    Logan, B.4
  • 2
    • 1842778990 scopus 로고    scopus 로고
    • Production of Electricity during Wastewater Treatment Using a Single Chamber Microbial Fuel Cell
    • H. Liu, R. Ramnarayanan, and B.E. Logan Production of Electricity during Wastewater Treatment Using a Single Chamber Microbial Fuel Cell Environ. Sci. Technol. 38 2004 2281 2285
    • (2004) Environ. Sci. Technol. , vol.38 , pp. 2281-2285
    • Liu, H.1    Ramnarayanan, R.2    Logan, B.E.3
  • 3
    • 22344440626 scopus 로고    scopus 로고
    • Electricity Generation from Artificial Wastewater Using an Upflow Microbial Fuel Cell
    • Z. He, S.D. Minteer, and L.T. Angenent Electricity Generation from Artificial Wastewater Using an Upflow Microbial Fuel Cell Environ. Sci. Technol. 39 2005 5262 5267
    • (2005) Environ. Sci. Technol. , vol.39 , pp. 5262-5267
    • He, Z.1    Minteer, S.D.2    Angenent, L.T.3
  • 6
    • 34249326597 scopus 로고    scopus 로고
    • Carbon nanotube/polyaniline composite as anode material for microbial fuel cells
    • Y. Qiao, C.M. Li, S.-J. Bao, and Q.-L. Bao Carbon nanotube/polyaniline composite as anode material for microbial fuel cells J. Power Sources 170 2007 79 84
    • (2007) J. Power Sources , vol.170 , pp. 79-84
    • Qiao, Y.1    Li, C.M.2    Bao, S.-J.3    Bao, Q.-L.4
  • 7
    • 84859141906 scopus 로고    scopus 로고
    • Macroporous and Monolithic Anode Based on Polyaniline Hybridized Three-Dimensional Graphene for High-Performance Microbial Fuel Cells
    • Y.-C. Yong, X.-C. Dong, M.B. Chan-Park, H. Song, and P. Chen Macroporous and Monolithic Anode Based on Polyaniline Hybridized Three-Dimensional Graphene for High-Performance Microbial Fuel Cells ACS Nano 6 2012 2394 2400
    • (2012) ACS Nano , vol.6 , pp. 2394-2400
    • Yong, Y.-C.1    Dong, X.-C.2    Chan-Park, M.B.3    Song, H.4    Chen, P.5
  • 8
    • 83555164625 scopus 로고    scopus 로고
    • Anode modification by electrochemical oxidation: A new practical method to improve the performance of microbial fuel cells
    • M. Zhou, M. Chi, H. Wang, and T. Jin Anode modification by electrochemical oxidation: A new practical method to improve the performance of microbial fuel cells Biochem. Eng. J. 60 2012 151 155
    • (2012) Biochem. Eng. J. , vol.60 , pp. 151-155
    • Zhou, M.1    Chi, M.2    Wang, H.3    Jin, T.4
  • 9
    • 80855156803 scopus 로고    scopus 로고
    • A layer-by-layer self-assembled Fe2O3 nanorod-based composite multilayer film on ITO anode in microbial fuel cell
    • J. Ji, Y. Jia, W. Wu, L. Bai, L. Ge, and Z. Gu A layer-by-layer self-assembled Fe2O3 nanorod-based composite multilayer film on ITO anode in microbial fuel cell Colloids Surf A 390 2011 56 61
    • (2011) Colloids Surf A , vol.390 , pp. 56-61
    • Ji, J.1    Jia, Y.2    Wu, W.3    Bai, L.4    Ge, L.5    Gu, Z.6
  • 10
    • 80052699260 scopus 로고    scopus 로고
    • Recent progress in electrodes for microbial fuel cells
    • J. Wei, P. Liang, and X. Huang Recent progress in electrodes for microbial fuel cells Bioresour. Technol. 102 2011 9335 9344
    • (2011) Bioresour. Technol. , vol.102 , pp. 9335-9344
    • Wei, J.1    Liang, P.2    Huang, X.3
  • 11
    • 80052373256 scopus 로고    scopus 로고
    • Power production enhancement with a polyaniline modified anode in microbial fuel cells
    • B. Lai, X. Tang, H. Li, Z. Du, X. Liu, and Q. Zhang Power production enhancement with a polyaniline modified anode in microbial fuel cells Biosens. Bioelectron. 28 2011 373 377
    • (2011) Biosens. Bioelectron. , vol.28 , pp. 373-377
    • Lai, B.1    Tang, X.2    Li, H.3    Du, Z.4    Liu, X.5    Zhang, Q.6
  • 12
    • 41749102338 scopus 로고    scopus 로고
    • Nanostructured Polyaniline/Titanium Dioxide Composite Anode for Microbial Fuel Cells
    • Y. Qiao, S.-J. Bao, C.M. Li, X.-Q. Cui, Z.-S. Lu, and J. Guo Nanostructured Polyaniline/Titanium Dioxide Composite Anode for Microbial Fuel Cells ACS Nano 2 2007 113 119
    • (2007) ACS Nano , vol.2 , pp. 113-119
    • Qiao, Y.1    Bao, S.-J.2    Li, C.M.3    Cui, X.-Q.4    Lu, Z.-S.5    Guo, J.6
  • 13
    • 0141565121 scopus 로고    scopus 로고
    • A microbial fuel cell capable of converting glucose to electricity at high rate and efficiency
    • K. Rabaey, G. Lissens, S. Siciliano, and W. Verstraete A microbial fuel cell capable of converting glucose to electricity at high rate and efficiency Biotechnol. Lett 25 2003 1531 1535
    • (2003) Biotechnol. Lett , vol.25 , pp. 1531-1535
    • Rabaey, K.1    Lissens, G.2    Siciliano, S.3    Verstraete, W.4
  • 14
    • 0141542682 scopus 로고    scopus 로고
    • Electricity generation by direct oxidation of glucose in mediatorless microbial fuel cells
    • S.K. Chaudhuri, and D.R. Lovley Electricity generation by direct oxidation of glucose in mediatorless microbial fuel cells Nat Biotech 21 2003 1229 1232
    • (2003) Nat Biotech , vol.21 , pp. 1229-1232
    • Chaudhuri, S.K.1    Lovley, D.R.2
  • 17
    • 84860523790 scopus 로고    scopus 로고
    • Ruthenium oxide-coated carbon felt electrode: A highly active anode for microbial fuel cell applications
    • Z. Lv, D. Xie, X. Yue, C. Feng, and C. Wei Ruthenium oxide-coated carbon felt electrode: A highly active anode for microbial fuel cell applications J. Power Sources 210 2012 26 31
    • (2012) J. Power Sources , vol.210 , pp. 26-31
    • Lv, Z.1    Xie, D.2    Yue, X.3    Feng, C.4    Wei, C.5
  • 20
    • 51349098769 scopus 로고    scopus 로고
    • A mediatorless microbial fuel cell using polypyrrole coated carbon nanotubes composite as anode material
    • Y. Zou, C. Xiang, L. Yang, L.-X. Sun, F. Xu, and Z. Cao A mediatorless microbial fuel cell using polypyrrole coated carbon nanotubes composite as anode material Int. J. Hydrogen Energy 33 2008 4856 4862
    • (2008) Int. J. Hydrogen Energy , vol.33 , pp. 4856-4862
    • Zou, Y.1    Xiang, C.2    Yang, L.3    Sun, L.-X.4    Xu, F.5    Cao, Z.6
  • 21
    • 84883365424 scopus 로고    scopus 로고
    • Nano-molybdenum carbide/carbon nanotubes composite as bifunctional anode catalyst for high-performance Escherichia coli-based microbial fuel cell
    • Y. Wang, B. Li, D. Cui, X. Xiang, and W. Li Nano-molybdenum carbide/carbon nanotubes composite as bifunctional anode catalyst for high-performance Escherichia coli-based microbial fuel cell Biosens. Bioelectron. 51 2014 349 355
    • (2014) Biosens. Bioelectron. , vol.51 , pp. 349-355
    • Wang, Y.1    Li, B.2    Cui, D.3    Xiang, X.4    Li, W.5
  • 22
    • 0036061605 scopus 로고    scopus 로고
    • Interfacing cytochrome c to electrodes with a DNA-carbon nanotube composite film
    • G. Wang, J.-J. Xu, and H.-Y. Chen Interfacing cytochrome c to electrodes with a DNA-carbon nanotube composite film Electrochem. Commun. 4 2002 506 509
    • (2002) Electrochem. Commun. , vol.4 , pp. 506-509
    • Wang, G.1    Xu, J.-J.2    Chen, H.-Y.3
  • 23
    • 0036173531 scopus 로고    scopus 로고
    • Electrochemistry of Cytochrome c Immobilized on Colloidal Gold Modified Carbon Paste Electrodes and Its Electrocatalytic Activity
    • H. Ju, S. Liu, B. Ge, F. Lisdat, and F.W. Scheller Electrochemistry of Cytochrome c Immobilized on Colloidal Gold Modified Carbon Paste Electrodes and Its Electrocatalytic Activity Electroanalysis 14 2002 141 147
    • (2002) Electroanalysis , vol.14 , pp. 141-147
    • Ju, H.1    Liu, S.2    Ge, B.3    Lisdat, F.4    Scheller, F.W.5
  • 24
    • 0037419705 scopus 로고    scopus 로고
    • Improved fuel cell and electrode designs for producing electricity from microbial degradation
    • D.H. Park, and J.G. Zeikus Improved fuel cell and electrode designs for producing electricity from microbial degradation Biotechnol. Bioeng. 81 2003 348 355
    • (2003) Biotechnol. Bioeng. , vol.81 , pp. 348-355
    • Park, D.H.1    Zeikus, J.G.2
  • 25
    • 34547659029 scopus 로고    scopus 로고
    • A Model for the Dependence of Carbon Nanotube Length on Acid Oxidation Time
    • G.A. Forrest, and A.J. Alexander A Model for the Dependence of Carbon Nanotube Length on Acid Oxidation Time J. Phys. Chem. C 111 2007 10792 10798
    • (2007) J. Phys. Chem. C , vol.111 , pp. 10792-10798
    • Forrest, G.A.1    Alexander, A.J.2
  • 26
    • 1442324492 scopus 로고    scopus 로고
    • Proton Exchange Membrane Fuel Cells with Carbon Nanotube Based Electrodes
    • C. Wang, M. Waje, X. Wang, J.M. Tang, R.C. Haddon, and Yan Proton Exchange Membrane Fuel Cells with Carbon Nanotube Based Electrodes Nano Lett. 4 2003 345 348
    • (2003) Nano Lett. , vol.4 , pp. 345-348
    • Wang, C.1    Waje, M.2    Wang, X.3    Tang, J.M.4    Haddon, R.C.5    Yan6
  • 27
    • 33746888206 scopus 로고    scopus 로고
    • Oxides@C Core-Shell Nanostructures: One-Pot Synthesis, Rational Conversion, and Li Storage Property
    • X. Sun, J. Liu, and Y. Li Oxides@C Core-Shell Nanostructures: One-Pot Synthesis, Rational Conversion, and Li Storage Property Chem. Mater 18 2006 3486 3494
    • (2006) Chem. Mater , vol.18 , pp. 3486-3494
    • Sun, X.1    Liu, J.2    Li, Y.3
  • 28
    • 0037076634 scopus 로고    scopus 로고
    • Preparation and Characterization of Platinum-Based Electrocatalysts on Multiwalled Carbon Nanotubes for Proton Exchange Membrane Fuel Cells
    • Z. Liu, X. Lin, J.Y. Lee, W. Zhang, M. Han, and L.M. Gan Preparation and Characterization of Platinum-Based Electrocatalysts on Multiwalled Carbon Nanotubes for Proton Exchange Membrane Fuel Cells Langmuir 18 2002 4054 4060
    • (2002) Langmuir , vol.18 , pp. 4054-4060
    • Liu, Z.1    Lin, X.2    Lee, J.Y.3    Zhang, W.4    Han, M.5    Gan, L.M.6
  • 30
    • 84874613635 scopus 로고    scopus 로고
    • TiO2 nanoparticles-decorated carbon nanotubes for significantly improved bioelectricity generation in microbial fuel cells
    • Z. Wen, S. Ci, S. Mao, S. Cui, G. Lu, K. Yu, S. Luo, Z. He, and J. Chen TiO2 nanoparticles-decorated carbon nanotubes for significantly improved bioelectricity generation in microbial fuel cells J. Power Sources 234 2013 100 106
    • (2013) J. Power Sources , vol.234 , pp. 100-106
    • Wen, Z.1    Ci, S.2    Mao, S.3    Cui, S.4    Lu, G.5    Yu, K.6    Luo, S.7    He, Z.8    Chen, J.9
  • 31
    • 83055161646 scopus 로고    scopus 로고
    • Decorating anode with bamboo-like nitrogen-doped carbon nanotubes for microbial fuel cells
    • S. Ci, Z. Wen, J. Chen, and Z. He Decorating anode with bamboo-like nitrogen-doped carbon nanotubes for microbial fuel cells Electrochem. Commun. 14 2012 71 74
    • (2012) Electrochem. Commun. , vol.14 , pp. 71-74
    • Ci, S.1    Wen, Z.2    Chen, J.3    He, Z.4
  • 32
    • 51349098769 scopus 로고    scopus 로고
    • A mediatorless microbial fuel cell using polypyrrole coated carbon nanotubes composite as anode material
    • Y. Zou, C. Xiang, L. Yang, L.-X. Sun, F. Xu, and Z. Cao A mediatorless microbial fuel cell using polypyrrole coated carbon nanotubes composite as anode material Int. J. Hydrogen Energy 33 2008 4856 4862
    • (2008) Int. J. Hydrogen Energy , vol.33 , pp. 4856-4862
    • Zou, Y.1    Xiang, C.2    Yang, L.3    Sun, L.-X.4    Xu, F.5    Cao, Z.6
  • 33
    • 83655167414 scopus 로고    scopus 로고
    • Stainless steel mesh coated with MnO 2/carbon nanotube and polymethylphenyl siloxane as low-cost and high-performance microbial fuel cell cathode materials
    • Y. Chen, Z. Lv, J. Xu, D. Peng, Y. Liu, J. Chen, X. Sun, C. Feng, and C. Wei Stainless steel mesh coated with MnO 2/carbon nanotube and polymethylphenyl siloxane as low-cost and high-performance microbial fuel cell cathode materials J. Power Sources 201 2012 136 141
    • (2012) J. Power Sources , vol.201 , pp. 136-141
    • Chen, Y.1    Lv, Z.2    Xu, J.3    Peng, D.4    Liu, Y.5    Chen, J.6    Sun, X.7    Feng, C.8    Wei, C.9
  • 34
    • 84883365424 scopus 로고    scopus 로고
    • Nano-molybdenum carbide/carbon nanotubes composite as bifunctional anode catalyst for high-performance Escherichia coli-based microbial fuel cell
    • Y. Wang, B. Li, D. Cui, X. Xiang, and W. Li Nano-molybdenum carbide/carbon nanotubes composite as bifunctional anode catalyst for high-performance Escherichia coli-based microbial fuel cell Biosens. Bioelectron. 51 2014 349 355
    • (2014) Biosens. Bioelectron. , vol.51 , pp. 349-355
    • Wang, Y.1    Li, B.2    Cui, D.3    Xiang, X.4    Li, W.5
  • 35
    • 51349168971 scopus 로고    scopus 로고
    • Indium tin oxide modified transparent nanotube thin films as effective anodes for flexible organic light-emitting diodes
    • 83306-83303
    • J. Li, L. Hu, J. Liu, L. Wang, T.J. Marks, and G. Gruner Indium tin oxide modified transparent nanotube thin films as effective anodes for flexible organic light-emitting diodes Appl. Phys. Lett. 93 2008 83306-83303
    • (2008) Appl. Phys. Lett. , vol.93
    • Li, J.1    Hu, L.2    Liu, J.3    Wang, L.4    Marks, T.J.5    Gruner, G.6
  • 36
    • 34250376464 scopus 로고    scopus 로고
    • Nanocrystalline Metal Oxides Dispersed Multiwalled Carbon Nanotubes as Supercapacitor Electrodes
    • A.L.M. Reddy, and S. Ramaprabhu Nanocrystalline Metal Oxides Dispersed Multiwalled Carbon Nanotubes as Supercapacitor Electrodes J. Phys. Chem. C 111 2007 7727 7734
    • (2007) J. Phys. Chem. C , vol.111 , pp. 7727-7734
    • Reddy, A.L.M.1    Ramaprabhu, S.2
  • 37
    • 84865146681 scopus 로고    scopus 로고
    • Parylene-C-Coated Indium Tin Oxide Electrodes for the Optical- and Electrical-Impedance Characterization of Cells
    • S. Kim, and S. Cho Parylene-C-Coated Indium Tin Oxide Electrodes for the Optical- and Electrical-Impedance Characterization of Cells Journal of Nanoscience and Nanotechnology 12 2012 5830 5834
    • (2012) Journal of Nanoscience and Nanotechnology , vol.12 , pp. 5830-5834
    • Kim, S.1    Cho, S.2
  • 38
    • 67349249988 scopus 로고    scopus 로고
    • Monitoring of cell growth in vitro using biochips packaged with indium tin oxide sensors
    • E. Moore, O. Rawley, T. Wood, and P. Galvin Monitoring of cell growth in vitro using biochips packaged with indium tin oxide sensors Sens. Actuators B: Chemical 139 2009 187 193
    • (2009) Sens. Actuators B: Chemical , vol.139 , pp. 187-193
    • Moore, E.1    Rawley, O.2    Wood, T.3    Galvin, P.4
  • 39
    • 33744498908 scopus 로고    scopus 로고
    • A novel mediatorless microbial fuel cell based on direct biocatalysis of Escherichia coli
    • T. Zhang, C. Cui, S. Chen, X. Ai, H. Yang, P. Shen, and Z. Peng A novel mediatorless microbial fuel cell based on direct biocatalysis of Escherichia coli Chem. Commun. 2006 2257 2259
    • (2006) Chem. Commun. , pp. 2257-2259
    • Zhang, T.1    Cui, C.2    Chen, S.3    Ai, X.4    Yang, H.5    Shen, P.6    Peng, Z.7
  • 40
    • 84896336587 scopus 로고    scopus 로고
    • Sustainable Power Generation in Continuous Flow Microbial Fuel Cell Treating Actual Wastewater: Influence of Biocatalyst Type on Electricity Production
    • Z.Z. Ismail, and A.J. Jaeel Sustainable Power Generation in Continuous Flow Microbial Fuel Cell Treating Actual Wastewater: Influence of Biocatalyst Type on Electricity Production The Scientific World Journal 2013 2013
    • (2013) The Scientific World Journal , vol.2013
    • Ismail, Z.Z.1    Jaeel, A.J.2
  • 41
    • 0037419705 scopus 로고    scopus 로고
    • Improved fuel cell and electrode designs for producing electricity from microbial degradation
    • D.H. Park, and J.G. Zeikus Improved fuel cell and electrode designs for producing electricity from microbial degradation Biotechnol. Bioeng. 81 2003 348 355
    • (2003) Biotechnol. Bioeng. , vol.81 , pp. 348-355
    • Park, D.H.1    Zeikus, J.G.2
  • 42
    • 0141542682 scopus 로고    scopus 로고
    • Electricity generation by direct oxidation of glucose in mediatorless microbial fuel cells
    • S.K. Chaudhuri, and D.R. Lovley Electricity generation by direct oxidation of glucose in mediatorless microbial fuel cells Nat. Biotechnol. 21 2003 1229 1232
    • (2003) Nat. Biotechnol. , vol.21 , pp. 1229-1232
    • Chaudhuri, S.K.1    Lovley, D.R.2
  • 43
    • 84865553792 scopus 로고    scopus 로고
    • Comparison of Escherichia coli and anaerobic consortia derived from compost as anodic biocatalysts in a glycerol-oxidizing microbial fuel cell
    • A. Reiche, and K.M. Kirkwood Comparison of Escherichia coli and anaerobic consortia derived from compost as anodic biocatalysts in a glycerol-oxidizing microbial fuel cell Bioresour. Technol. 123 2012 318 323
    • (2012) Bioresour. Technol. , vol.123 , pp. 318-323
    • Reiche, A.1    Kirkwood, K.M.2
  • 44
    • 84883384368 scopus 로고    scopus 로고
    • Direct electron transfer in E. Coli catalyzed MFC with a magnetite/MWCNT modified anode
    • I.H. Park, Y.H. Heo, P. Kim, and K.S. Nahm Direct electron transfer in E. coli catalyzed MFC with a magnetite/MWCNT modified anode RSC Advances 3 2013 16665 16671
    • (2013) RSC Advances , vol.3 , pp. 16665-16671
    • Park, I.H.1    Heo, Y.H.2    Kim, P.3    Nahm, K.S.4
  • 45
    • 84870807893 scopus 로고    scopus 로고
    • Polyaniline/mesoporous tungsten trioxide composite as anode electrocatalyst for high-performance microbial fuel cells
    • Y. Wang, B. Li, L. Zeng, D. Cui, X. Xiang, and W. Li Polyaniline/ mesoporous tungsten trioxide composite as anode electrocatalyst for high-performance microbial fuel cells Biosens. Bioelectron. 41 2013 582 588
    • (2013) Biosens. Bioelectron. , vol.41 , pp. 582-588
    • Wang, Y.1    Li, B.2    Zeng, L.3    Cui, D.4    Xiang, X.5    Li, W.6
  • 46
  • 47
    • 79958750993 scopus 로고    scopus 로고
    • Large-Scale Synthesis of SnO2 Nanotube Arrays as High-Performance Anode Materials of Li-Ion Batteries
    • J. Wang, N. Du, H. Zhang, J. Yu, and D. Yang Large-Scale Synthesis of SnO2 Nanotube Arrays as High-Performance Anode Materials of Li-Ion Batteries J. Phys. Chem. C 115 2011 11302 11305
    • (2011) J. Phys. Chem. C , vol.115 , pp. 11302-11305
    • Wang, J.1    Du, N.2    Zhang, H.3    Yu, J.4    Yang, D.5
  • 48
    • 0028533683 scopus 로고
    • A simple chemical method of opening and filling carbon nanotubes
    • S.C. Tsang, Y.K. Chen, P.J.F. Harris, and M.L.H. Green A simple chemical method of opening and filling carbon nanotubes Nature 372 1994 159 162
    • (1994) Nature , vol.372 , pp. 159-162
    • Tsang, S.C.1    Chen, Y.K.2    Harris, P.J.F.3    Green, M.L.H.4
  • 49
    • 33748549027 scopus 로고    scopus 로고
    • An Upflow Microbial Fuel Cell with an Interior Cathode: Assessment of the Internal Resistance by Impedance Spectroscopy†
    • Z. He, N. Wagner, S.D. Minteer, and L.T. Angenent An Upflow Microbial Fuel Cell with an Interior Cathode: Assessment of the Internal Resistance by Impedance Spectroscopy† Environ. Sci. Technol. 40 2006 5212 5217
    • (2006) Environ. Sci. Technol. , vol.40 , pp. 5212-5217
    • He, Z.1    Wagner, N.2    Minteer, S.D.3    Angenent, L.T.4
  • 50
    • 0024444799 scopus 로고
    • Efficacy of phospholipid analysis in determining microbial biomass in sediments
    • R.H. Findlay, G.M. King, and L. Watling Efficacy of phospholipid analysis in determining microbial biomass in sediments Appl. Environ. Microbiol. 55 1989 2888 2893
    • (1989) Appl. Environ. Microbiol. , vol.55 , pp. 2888-2893
    • Findlay, R.H.1    King, G.M.2    Watling, L.3
  • 51
    • 84887110776 scopus 로고    scopus 로고
    • Improved performance of a tubular microbial fuel cell with a composite anode of graphite fiber brush and graphite granules
    • J. cLi, C. Liu, Q. Liao, X. Zhu, and D. Ye Improved performance of a tubular microbial fuel cell with a composite anode of graphite fiber brush and graphite granules Int. J. Hydrogen Energy 38 2013 1 7
    • (2013) Int. J. Hydrogen Energy , vol.38 , pp. 1-7
    • Cli, J.1    Liu, C.2    Liao, Q.3    Zhu, X.4    Ye, D.5
  • 52
    • 79955465102 scopus 로고    scopus 로고
    • A graphene modified anode to improve the performance of microbial fuel cells
    • Y. Zhang, G. Mo, X. Li, W. Zhang, J. Zhang, J. Ye, X. Huang, and C. Yu A graphene modified anode to improve the performance of microbial fuel cells J. Power Sources 196 2011 5402 5407
    • (2011) J. Power Sources , vol.196 , pp. 5402-5407
    • Zhang, Y.1    Mo, G.2    Li, X.3    Zhang, W.4    Zhang, J.5    Ye, J.6    Huang, X.7    Yu, C.8
  • 53
    • 84857750356 scopus 로고    scopus 로고
    • Crumpled graphene particles for microbial fuel cell electrodes
    • L. Xiao, J. Damien, J. Luo, H.D. Jang, J. Huang, and Z. He Crumpled graphene particles for microbial fuel cell electrodes J. Power Sources 208 2012 187 192
    • (2012) J. Power Sources , vol.208 , pp. 187-192
    • Xiao, L.1    Damien, J.2    Luo, J.3    Jang, H.D.4    Huang, J.5    He, Z.6
  • 54
    • 0041344634 scopus 로고    scopus 로고
    • Characterization of the Shewanella oneidensis MR-1 Decaheme Cytochrome MtrA: Expression in escherichia coli confers the ability to reduce soluble fe(iii) chelates
    • K.E. Pitts, P.S. Dobbin, F. Reyes-Ramirez, A.J. Thomson, D.J. Richardson, and H.E. Seward Characterization of the Shewanella oneidensis MR-1 Decaheme Cytochrome MtrA: Expression in escherichia coli confers the ability to reduce soluble fe(iii) chelates J. Biol. Chem. 278 2003 27758 27765
    • (2003) J. Biol. Chem. , vol.278 , pp. 27758-27765
    • Pitts, K.E.1    Dobbin, P.S.2    Reyes-Ramirez, F.3    Thomson, A.J.4    Richardson, D.J.5    Seward, H.E.6
  • 56
    • 54549096108 scopus 로고    scopus 로고
    • Electrocatalytic Oxidation and;1; Voltammetric Determination of Nitrite on Hydrophobic Ionic Liquid-Carbon Nanotube Gel-Chitosan Composite Modified Electrodes
    • F. Xiao, L. Liu, J. Li, J. Zeng, and B. Zeng Electrocatalytic Oxidation and;1; Voltammetric Determination of Nitrite on Hydrophobic Ionic Liquid-Carbon Nanotube Gel-Chitosan Composite Modified Electrodes Electroanalysis 20 2008 2047 2054
    • (2008) Electroanalysis , vol.20 , pp. 2047-2054
    • Xiao, F.1    Liu, L.2    Li, J.3    Zeng, J.4    Zeng, B.5
  • 59
    • 34447523820 scopus 로고    scopus 로고
    • Anodic electron transfer mechanisms in microbial fuel cells and their energy efficiency
    • U. Schroder Anodic electron transfer mechanisms in microbial fuel cells and their energy efficiency PCCP 9 2007 2619 2629
    • (2007) PCCP , vol.9 , pp. 2619-2629
    • Schroder, U.1
  • 60
    • 84898075510 scopus 로고    scopus 로고
    • Growth energy of bacteria and the associated electricity generation in fuel cells
    • E.Y. Moawad Growth energy of bacteria and the associated electricity generation in fuel cells Bioengineering and Bioscience 1 2013 5 10
    • (2013) Bioengineering and Bioscience , vol.1 , pp. 5-10
    • Moawad, E.Y.1
  • 61
    • 19444367096 scopus 로고    scopus 로고
    • Microbial fuel cells: Novel biotechnology for energy generation
    • K. Rabaey, and W. Verstraete Microbial fuel cells: novel biotechnology for energy generation Trends Biotechnol. 23 2005 291 298
    • (2005) Trends Biotechnol. , vol.23 , pp. 291-298
    • Rabaey, K.1    Verstraete, W.2
  • 62
    • 19444367096 scopus 로고    scopus 로고
    • Microbial fuel cells: Novel biotechnology for energy generation
    • K. Rabaey, and W. Verstraete Microbial fuel cells: novel biotechnology for energy generation Trends Biotechnol 23 2005 291 298
    • (2005) Trends Biotechnol , vol.23 , pp. 291-298
    • Rabaey, K.1    Verstraete, W.2
  • 63
    • 0002954253 scopus 로고
    • Determination of unimolecular electron transfer rate constants for strongly adsorbed cytochrome c on tin oxide electrodes
    • J.L. Willit, and E.F. Bowden Determination of unimolecular electron transfer rate constants for strongly adsorbed cytochrome c on tin oxide electrodes Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 221 1987 265 274
    • (1987) Journal of Electroanalytical Chemistry and Interfacial Electrochemistry , vol.221 , pp. 265-274
    • Willit, J.L.1    Bowden, E.F.2
  • 64
    • 33751552860 scopus 로고
    • Adsorption and redox thermodynamics of strongly adsorbed cytochrome c on tin oxide electrodes
    • J.L. Willit, and E.F. Bowden Adsorption and redox thermodynamics of strongly adsorbed cytochrome c on tin oxide electrodes The Journal of Physical Chemistry 94 1990 8241 8246
    • (1990) The Journal of Physical Chemistry , vol.94 , pp. 8241-8246
    • Willit, J.L.1    Bowden, E.F.2
  • 65
    • 0042890314 scopus 로고    scopus 로고
    • Direct Electrochemistry and Nitric Oxide Interaction of Heme Proteins Adsorbed on Nanocrystalline Tin Oxide Electrodes
    • E. Topoglidis, Y. Astuti, F. Duriaux, M. Grätzel, and J.R. Durrant Direct Electrochemistry and Nitric Oxide Interaction of Heme Proteins Adsorbed on Nanocrystalline Tin Oxide Electrodes Langmuir 19 2003 6894 6900
    • (2003) Langmuir , vol.19 , pp. 6894-6900
    • Topoglidis, E.1    Astuti, Y.2    Duriaux, F.3    Grätzel, M.4    Durrant, J.R.5
  • 66
    • 3242707506 scopus 로고    scopus 로고
    • Electricity generation using an air-cathode single chamber microbial fuel cell in the presence and absence of a proton exchange membrane
    • H. Liu, and B.E. Logan Electricity generation using an air-cathode single chamber microbial fuel cell in the presence and absence of a proton exchange membrane Environ. Sci. Technol. 38 2004 4040 4046
    • (2004) Environ. Sci. Technol. , vol.38 , pp. 4040-4046
    • Liu, H.1    Logan, B.E.2
  • 67
    • 35148847389 scopus 로고    scopus 로고
    • Marine microbial fuel cell: Use of stainless steel electrodes as anode and cathode materials
    • C. Dumas, A. Mollica, D. Féron, R. Basséguy, L. Etcheverry, and A. Bergel Marine microbial fuel cell: Use of stainless steel electrodes as anode and cathode materials Electrochim. Acta 53 2007 468 473
    • (2007) Electrochim. Acta , vol.53 , pp. 468-473
    • Dumas, C.1    Mollica, A.2    Féron, D.3    Basséguy, R.4    Etcheverry, L.5    Bergel, A.6
  • 68
    • 71549124096 scopus 로고    scopus 로고
    • Power generation using an activated carbon fiber felt cathode in an upflow microbial fuel cell
    • Q. Deng, X. Li, J. Zuo, A. Ling, and B.E. Logan Power generation using an activated carbon fiber felt cathode in an upflow microbial fuel cell J. Power Sources 195 2010 1130 1135
    • (2010) J. Power Sources , vol.195 , pp. 1130-1135
    • Deng, Q.1    Li, X.2    Zuo, J.3    Ling, A.4    Logan, B.E.5
  • 69
    • 34548434623 scopus 로고    scopus 로고
    • Microbial fuel cell performance with non-Pt cathode catalysts
    • E. HaoYu, S. Cheng, K. Scott, and B. Logan Microbial fuel cell performance with non-Pt cathode catalysts J. Power Sources 171 2007 275 281
    • (2007) J. Power Sources , vol.171 , pp. 275-281
    • Haoyu, E.1    Cheng, S.2    Scott, K.3    Logan, B.4
  • 70
    • 77049083353 scopus 로고    scopus 로고
    • A novel layer-by-layer self-assembled carbon nanotube-based anode: Preparation, characterization, and application in microbial fuel cell
    • J.-J. Sun, H.-Z. Zhao, Q.-Z. Yang, J. Song, and A. Xue A novel layer-by-layer self-assembled carbon nanotube-based anode: Preparation, characterization, and application in microbial fuel cell Electrochim. Acta 55 2010 3041 3047
    • (2010) Electrochim. Acta , vol.55 , pp. 3041-3047
    • Sun, J.-J.1    Zhao, H.-Z.2    Yang, Q.-Z.3    Song, J.4    Xue, A.5
  • 71
    • 84874613635 scopus 로고    scopus 로고
    • TiO2 nanoparticles-decorated carbon nanotubes for significantly improved bioelectricity generation in microbial fuel cells
    • Z. Wen, S. Ci, S. Mao, S. Cui, G. Lu, K. Yu, S. Luo, Z. He, and J. Chen TiO2 nanoparticles-decorated carbon nanotubes for significantly improved bioelectricity generation in microbial fuel cells J. Power Sources 234 2013 100 106
    • (2013) J. Power Sources , vol.234 , pp. 100-106
    • Wen, Z.1    Ci, S.2    Mao, S.3    Cui, S.4    Lu, G.5    Yu, K.6    Luo, S.7    He, Z.8    Chen, J.9


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.